
The MySQL Hypergraph Optimizer
What, Why and How

Norvald H. Ryeng

Software Development Director

MySQL Optimizer Team

January 31, 2025

2025–01–31Copyright © 2025, Oracle and/or its affiliates1



1. Query processing 101

2. Why a new optimizer?

3. What is a hypergraph, and what is it doing in my optimizer?

4. How can I start using the hypergraph optimizer?
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• Too much based on heuristic instead of cost

• Inefficient join ordering algorithm

• Try all combinations up to a certain number of tables
• Switches to greedy search when there are too many tables

• No caching of costs — computes the same numbers several times

• Left deep plans only

• Doesn’t track interesting orders

• Poor at making the choice between explicit sort and reading in sorted order from an index

• Bad at choosing between join algorithms

• Inherently nested loop join based

• Presents HeatWave and NDB with only a complete plan

• No way for HeatWave or NDB to guide the optimizer in plan selection

Shortcomings of the old optimizer
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• Modern, based on research

• But not experimental!

• Cost based

• Interesting order tracking

• Cost based join algorithm selection

• Same optimizer for all storage engines

• Local row store (InnoDB)

• Distributed row store (MySQL Cluster/NDB)

• Distributed column store (HeatWave)

• Bushy plans

Design goals
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What is a hypergraph, and what is it doing in 
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What is a hypergraph?
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A hypergraph is a generalization of a graph where hyperedges connect two sets of vertices

SELECT * FROM t1 LEFT JOIN (t2 JOIN t3 ON t2.b = t3.b) ON t1.a = t2.a)

Join graph Join hypergraph

t1

t2

t3

There is no edge (t1, t3) in the graph since there is no join 
condition connecting t1 and t3.

t1

t2

t3

The hypergraph captures the (t1, t3) connection through the 
({t1}, {t2, t3}) hyperedge.



• Start by proposing all the ways we can access a single table

• Table scan, index scan, index lookup, index range scan, etc.

• Propose all the ways to access another table

• Propose all the ways to join the two tables

• All join orderings

• Build larger and larger plans

• Always propose both sides of a join before proposing the join itself

Example:

1. t2

2. t3

3. t2⋈ t3

4. t1

5. t1⋈ (t2⋈ t3)

Proposing subplans
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• A more expensive subplan may turn out to be a better choice in the end

• E.g., it produces a sorted order, and an ordered result is beneficial in the final plan

• Several cost dimensions

1. Total cost of producing this result once

2. Initialization cost (e.g., materialize a subquery)

3. Rescan cost (e.g., read a materialized table the second time)

4. Dependency on other tables (subplan is a candidate only when those tables are present)

5. Ordering

6. Does provide row IDs (sorting may be faster if it does)

7. Can update/delete while scanning the table (allows UPDATE/DELETE without materialization)

• A plan candidate is kept if it is not dominated by any other plan

• I.e, there is at least one dimension where this plan is better than the current set of best plans

Multidimensional cost model
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• Theoretical ideal: Finish when the time spent to find a better plan is more than the potential savings

• I.e., minimize the total query processing time (optimization + execution)

• Impossible to know up front

• Bottom-up planner

• No complete plan until (almost) all orderings have been tried

• MySQL hypergraph optimizer: Finish when there are no more plans to propose

• Planning time depends on query properties

• Number of tables

• Join conditions

• Number of relevant indexes

• ...

When will the optimizer finish processing?
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• Resort to heuristics if computing all possible join orderings takes too long

• Currently limited by number of possible join orderings (not time)

• Use heuristics to add new hyperedges to the join hypergraph

• Encodes a locked join ordering

• The full set of tables at each end must be computed before computing the hyperedge

Current algorithm:

1. Set n=1

2. Add n artificial hyperedge(s)

3. Compute number of possible join orderings (skip cost evaluation to make it fast)

4. If there are still too many possible join orderings, set n=2n and go to (2)

5. Bisect between n/2 and n to find minimum number of hyperedges to add without generating too many plans

6. Re-run the optimizer and find best plan

Back to heuristics

Copyright © 2025, Oracle and/or its affiliates36 2025–01–31



The MySQL hypergraph optimizer

Copyright © 2025, Oracle and/or its affiliates37 2025–01–31

Prepare

Execute

Construct hypergraph

Propose subplan
(until no more possible plans)

Compute cost
Update 

candidate best
plans

%

≈
Σ∫∂

1 2 3 4 5 6 7 P

Finalize plan

Old
optimizer

Transform 
plan

Hypergraph 
optimizer

Parse

A
B

C
D

E

F



Copyright © 2025, Oracle and/or its affiliates38

How can I start using the hypergraph 
optimizer?

2025–01–31



Copyright © 2025, Oracle and/or its affiliates39 2025–01–312022–06-13

Parse

Prepare

Resolve

Transform

Old optimizer
Hypergraph 

optimizer

Transform plan

Execute Execute

HeatWave

NDB

Old plan format

InnoDB

New plan format

hypergraph_optimizer=off hypergraph_optimizer=on
or HeatWave



• Conly available in HeatWave MySQL cloud services (OCI or AWS)

• Available since 9.0.0

• Switch optimizers by setting an optimizer switch:

SET optimizer_switch=‘hypergraph_optimizer=on’;

Start using the hypergraph optimizer
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Thank you
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Our mission is to help people see data in new ways, 
discover insights, unlock endless possibilities.
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