
The MySQL Hypergraph Optimizer
What, Why and How

Norvald H. Ryeng

Software Development Director

MySQL Optimizer Team

January 31, 2025

2025–01–31Copyright © 2025, Oracle and/or its affiliates1



1. Query processing 101

2. Why a new optimizer?

3. What is a hypergraph, and what is it doing in my optimizer?

4. How can I start using the hypergraph optimizer?

Agenda

Copyright © 2025, Oracle and/or its affiliates2 2025–01–31



Copyright © 2025, Oracle and/or its affiliates3

Query processing 101

2025–01–31



Query processing

Copyright © 2025, Oracle and/or its affiliates4 2025–01–31

Client Server

Query

Result



Query processing

Copyright © 2025, Oracle and/or its affiliates5 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute



Query processing

Copyright © 2025, Oracle and/or its affiliates6 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation



Query processing

Copyright © 2025, Oracle and/or its affiliates7 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Abstract syntax tree (AST)



Query processing

Copyright © 2025, Oracle and/or its affiliates8 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Look up identifiers
Check privileges

Abstract syntax tree (AST)



Query processing

Copyright © 2025, Oracle and/or its affiliates9 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Look up identifiers
Check privileges

Constant folding
Subquery unnesting (flattening)
Transform to canonical form

Abstract syntax tree (AST)



Query processing

Copyright © 2025, Oracle and/or its affiliates10 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Look up identifiers
Check privileges

Constant folding
Subquery unnesting (flattening)
Transform to canonical form

Abstract syntax tree (AST)

Logical plan



Query processing

Copyright © 2025, Oracle and/or its affiliates11 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Look up identifiers
Check privileges

Constant folding
Subquery unnesting (flattening)
Transform to canonical form

Decide how to execute
Join order
Access methods
Join algorithms

Abstract syntax tree (AST)

Logical plan



Query processing

Copyright © 2025, Oracle and/or its affiliates12 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Look up identifiers
Check privileges

Constant folding
Subquery unnesting (flattening)
Transform to canonical form

Decide how to execute
Join order
Access methods
Join algorithms

Abstract syntax tree (AST)

Logical plan

Physical plan



Query processing

Copyright © 2025, Oracle and/or its affiliates13 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Look up identifiers
Check privileges

Constant folding
Subquery unnesting (flattening)
Transform to canonical form

Decide how to execute
Join order
Access methods
Join algorithms

Transform query plan to code

Abstract syntax tree (AST)

Logical plan

Physical plan



Query processing

Copyright © 2025, Oracle and/or its affiliates14 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Look up identifiers
Check privileges

Constant folding
Subquery unnesting (flattening)
Transform to canonical form

Decide how to execute
Join order
Access methods
Join algorithms

Transform query plan to code

Abstract syntax tree (AST)

Logical plan

Physical plan

Query program



Query processing

Copyright © 2025, Oracle and/or its affiliates15 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Look up identifiers
Check privileges

Constant folding
Subquery unnesting (flattening)
Transform to canonical form

Decide how to execute
Join order
Access methods
Join algorithms

Transform query plan to code

Execute the code

Abstract syntax tree (AST)

Logical plan

Physical plan

Query program



Query processing

Copyright © 2025, Oracle and/or its affiliates16 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Look up identifiers
Check privileges

Constant folding
Subquery unnesting (flattening)
Transform to canonical form

Decide how to execute
Join order
Access methods
Join algorithms

Transform query plan to code

Execute the code

Abstract syntax tree (AST)

Logical plan

Physical plan

Query program



Query processing

Copyright © 2025, Oracle and/or its affiliates17 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Look up identifiers
Check privileges

Constant folding
Subquery unnesting (flattening)
Transform to canonical form

Decide how to execute
Join order
Access methods
Join algorithms

Transform query plan to code

Execute the code

Abstract syntax tree (AST)

Logical plan

Physical plan

Query program

P
re

p
ar

e



Query processing

Copyright © 2025, Oracle and/or its affiliates18 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Look up identifiers
Check privileges

Constant folding
Subquery unnesting (flattening)
Transform to canonical form

Decide how to execute
Join order
Access methods
Join algorithms

Transform query plan to code

Execute the code

Abstract syntax tree (AST)

Logical plan

Physical plan

Query program

P
re

p
ar

e



Query processing

Copyright © 2025, Oracle and/or its affiliates19 2025–01–31

Client Server

Query

Result

Parse

Resolve

Rewrite

Optimize

Generate code

Execute

Syntactically well-formed
Translate to tree representation

Look up identifiers
Check privileges

Constant folding
Subquery unnesting (flattening)
Transform to canonical form

Decide how to execute
Join order
Access methods
Join algorithms

Transform query plan to code

Execute the code

Abstract syntax tree (AST)

Logical plan

Physical plan

Query program

P
re

p
ar

e
Ex

ec
u

te



MySQL 9.0+

Copyright © 2025, Oracle and/or its affiliates20 2025–01–312022–06-13

Parse

Prepare

Resolve

Transform

Old optimizer
Hypergraph 

optimizer

Transform plan

Execute Execute

HeatWave

NDB

Old plan format

InnoDB

New plan format

hypergraph_optimizer=off hypergraph_optimizer=on
or HeatWave



Copyright © 2025, Oracle and/or its affiliates21

Why a new optimizer?

2025–01–31



• Too much based on heuristic instead of cost

• Inefficient join ordering algorithm

• Try all combinations up to a certain number of tables
• Switches to greedy search when there are too many tables

• No caching of costs — computes the same numbers several times

• Left deep plans only

• Doesn’t track interesting orders

• Poor at making the choice between explicit sort and reading in sorted order from an index

• Bad at choosing between join algorithms

• Inherently nested loop join based

• Presents HeatWave and NDB with only a complete plan

• No way for HeatWave or NDB to guide the optimizer in plan selection

Shortcomings of the old optimizer

Copyright © 2025, Oracle and/or its affiliates22 2025–01–31



• Modern, based on research

• But not experimental!

• Cost based

• Interesting order tracking

• Cost based join algorithm selection

• Same optimizer for all storage engines

• Local row store (InnoDB)

• Distributed row store (MySQL Cluster/NDB)

• Distributed column store (HeatWave)

• Bushy plans

Design goals

Copyright © 2025, Oracle and/or its affiliates23 2025–01–31



Copyright © 2025, Oracle and/or its affiliates26

What is a hypergraph, and what is it doing in 
my optimizer?

2025–01–31



The MySQL hypergraph optimizer

Copyright © 2025, Oracle and/or its affiliates27 2025–01–31

Prepare

Execute

Construct hypergraph

Propose subplan
(until no more possible plans)

Compute cost
Update 

candidate best
plans

%

≈
Σ∫∂

1 2 3 4 5 6 7 P

Finalize plan

Old
optimizer

Transform 
plan

Hypergraph 
optimizer

Parse

A
B

C
D

E

F



What is a hypergraph?

Copyright © 2025, Oracle and/or its affiliates28 2025–01–31

A hypergraph is a generalization of a graph where hyperedges connect two sets of vertices

SELECT * FROM t1 LEFT JOIN (t2 JOIN t3 ON t2.b = t3.b) ON t1.a = t2.a)

Join graph Join hypergraph

t1

t2

t3

There is no edge (t1, t3) in the graph since there is no join 
condition connecting t1 and t3.

t1

t2

t3

The hypergraph captures the (t1, t3) connection through the 
({t1}, {t2, t3}) hyperedge.



• Start by proposing all the ways we can access a single table

• Table scan, index scan, index lookup, index range scan, etc.

• Propose all the ways to access another table

• Propose all the ways to join the two tables

• All join orderings

• Build larger and larger plans

• Always propose both sides of a join before proposing the join itself

Example:

1. t2

2. t3

3. t2⋈ t3

4. t1

5. t1⋈ (t2⋈ t3)

Proposing subplans

Copyright © 2025, Oracle and/or its affiliates30 2025–01–31

t1

t2

t3



The MySQL hypergraph optimizer

Copyright © 2025, Oracle and/or its affiliates32 2025–01–31

Prepare

Execute

Construct hypergraph

Propose subplan
(until no more possible plans)

Compute cost
Update 

candidate best
plans

%

≈
Σ∫∂

1 2 3 4 5 6 7 P

Finalize plan

Old
optimizer

Transform 
plan

Hypergraph 
optimizer

Parse

A
B

C
D

E

F



• A more expensive subplan may turn out to be a better choice in the end

• E.g., it produces a sorted order, and an ordered result is beneficial in the final plan

• Several cost dimensions

1. Total cost of producing this result once

2. Initialization cost (e.g., materialize a subquery)

3. Rescan cost (e.g., read a materialized table the second time)

4. Dependency on other tables (subplan is a candidate only when those tables are present)

5. Ordering

6. Does provide row IDs (sorting may be faster if it does)

7. Can update/delete while scanning the table (allows UPDATE/DELETE without materialization)

• A plan candidate is kept if it is not dominated by any other plan

• I.e, there is at least one dimension where this plan is better than the current set of best plans

Multidimensional cost model

Copyright © 2025, Oracle and/or its affiliates34 2025–01–31



• Theoretical ideal: Finish when the time spent to find a better plan is more than the potential savings

• I.e., minimize the total query processing time (optimization + execution)

• Impossible to know up front

• Bottom-up planner

• No complete plan until (almost) all orderings have been tried

• MySQL hypergraph optimizer: Finish when there are no more plans to propose

• Planning time depends on query properties

• Number of tables

• Join conditions

• Number of relevant indexes

• ...

When will the optimizer finish processing?

Copyright © 2025, Oracle and/or its affiliates35 2025–01–31



• Resort to heuristics if computing all possible join orderings takes too long

• Currently limited by number of possible join orderings (not time)

• Use heuristics to add new hyperedges to the join hypergraph

• Encodes a locked join ordering

• The full set of tables at each end must be computed before computing the hyperedge

Current algorithm:

1. Set n=1

2. Add n artificial hyperedge(s)

3. Compute number of possible join orderings (skip cost evaluation to make it fast)

4. If there are still too many possible join orderings, set n=2n and go to (2)

5. Bisect between n/2 and n to find minimum number of hyperedges to add without generating too many plans

6. Re-run the optimizer and find best plan

Back to heuristics

Copyright © 2025, Oracle and/or its affiliates36 2025–01–31



The MySQL hypergraph optimizer

Copyright © 2025, Oracle and/or its affiliates37 2025–01–31

Prepare

Execute

Construct hypergraph

Propose subplan
(until no more possible plans)

Compute cost
Update 

candidate best
plans

%

≈
Σ∫∂

1 2 3 4 5 6 7 P

Finalize plan

Old
optimizer

Transform 
plan

Hypergraph 
optimizer

Parse

A
B

C
D

E

F



Copyright © 2025, Oracle and/or its affiliates38

How can I start using the hypergraph 
optimizer?

2025–01–31



Copyright © 2025, Oracle and/or its affiliates39 2025–01–312022–06-13

Parse

Prepare

Resolve

Transform

Old optimizer
Hypergraph 

optimizer

Transform plan

Execute Execute

HeatWave

NDB

Old plan format

InnoDB

New plan format

hypergraph_optimizer=off hypergraph_optimizer=on
or HeatWave



• Conly available in HeatWave MySQL cloud services (OCI or AWS)

• Available since 9.0.0

• Switch optimizers by setting an optimizer switch:

SET optimizer_switch=‘hypergraph_optimizer=on’;

Start using the hypergraph optimizer

Copyright © 2025, Oracle and/or its affiliates40 2025–01–31



Thank you

41 Copyright © 2025, Oracle and/or its affiliates 2025–01–31





Our mission is to help people see data in new ways, 
discover insights, unlock endless possibilities.


	Slide 1: The MySQL Hypergraph Optimizer
	Slide 2: Agenda
	Slide 3: Query processing 101
	Slide 4: Query processing
	Slide 5: Query processing
	Slide 6: Query processing
	Slide 7: Query processing
	Slide 8: Query processing
	Slide 9: Query processing
	Slide 10: Query processing
	Slide 11: Query processing
	Slide 12: Query processing
	Slide 13: Query processing
	Slide 14: Query processing
	Slide 15: Query processing
	Slide 16: Query processing
	Slide 17: Query processing
	Slide 18: Query processing
	Slide 19: Query processing
	Slide 20: MySQL 9.0+
	Slide 21: Why a new optimizer?
	Slide 22: Shortcomings of the old optimizer
	Slide 23: Design goals
	Slide 26: What is a hypergraph, and what is it doing in my optimizer?
	Slide 27: The MySQL hypergraph optimizer
	Slide 28: What is a hypergraph?
	Slide 30: Proposing subplans
	Slide 32: The MySQL hypergraph optimizer
	Slide 34: Multidimensional cost model
	Slide 35: When will the optimizer finish processing?
	Slide 36: Back to heuristics
	Slide 37: The MySQL hypergraph optimizer
	Slide 38: How can I start using the hypergraph optimizer?
	Slide 39
	Slide 40: Start using the hypergraph optimizer
	Slide 41: Thank you
	Slide 42
	Slide 43

