
Stop Throwing Hardware
at the Problem

MySQL Belgium Days
30/01/2025

The Case for Smarter Scaling with Query Caching

Marcelo Altmann

2

● Senior Software Engineer @ Readyset

● Senior Software Engineer @ Percona
○ Maintainer of Percona XtraBackup for MySQL

● Long time Community contributor

● Oracle ACE

● MySQL Code Contributor

● MySQL Rust Driver Contributor

Gautam Gopinadhan

3

● CEO @ Readyset

● Past Datarobot, Microsoft Azure, StorSimple, Cisco, Sun Microsystems.
○ Azure Blob Storage, Azure Edge Computing.
○ Distributed Systems, Filesystems, Storage caching, WAN Optimization,

Security, Media Streaming

Agenda

Agenda

5

● Scaling solutions for an example query

● How Readyset compares

● Demo

● ProxySQL & Readyset

● Case Study

Database
Scaling

Database Scaling

7

● Out of resource to serve queries

● Database = Application performance

● Cache complements your database infrastructure

● Suitable for applications requiring low latency and high throughput.

Database Scaling

8

mysql> SELECT d.dept_name, COUNT(*) AS employee_count FROM dept_emp de JOIN departments d ON
de.dept_no = d.dept_no WHERE de.to_date = '9999-01-01' GROUP BY de.dept_no;
+--------------------+----------------+
| dept_name | employee_count |
+--------------------+----------------+
Development	61386
Sales	37701
Production	53304
Human Resources	12898
Research	15441
Quality Management	14546
Marketing	14842
Customer Service	17569
Finance	12437
+--------------------+----------------+
9 rows in set (0.437 sec)

Database Scaling

9

mysql> EXPLAIN ANALYZE FORMAT=TREE SELECT d.dept_name. . .

| -> Table scan on <temporary> (actual time=442..442 rows=9 loops=1)
 -> Aggregate using temporary table (actual time=442..442 rows=9 loops=1)
 -> Nested loop inner join (cost=44889 rows=33114) (actual time=0.605..346 rows=240124
loops=1)
 -> Filter: (de.to_date = DATE'9999-01-01') (cost=33299 rows=33114) (actual
time=0.594..88.5 rows=240124 loops=1)
 -> Table scan on de (cost=33299 rows=331143) (actual time=0.591..65.7
rows=331603 loops=1)
 -> Single-row index lookup on d using PRIMARY (dept_no=de.dept_no) (cost=0.25
rows=1) (actual time=913e-6..938e-6 rows=1 loops=240124)

Database Scaling

10

mysql> mysql> CREATE INDEX idx_dept_emp_to_date ON dept_emp(to_date, dept_no);
Query OK, 0 rows affected (0.965 sec)

mysql> EXPLAIN ANALYZE FORMAT=TREE SELECT d.dept_name
| -> Table scan on <temporary> (actual time=152..152 rows=9 loops=1)
 -> Aggregate using temporary table (actual time=152..152 rows=9 loops=1)
 -> Nested loop inner join (cost=19.1 rows=85.7) (actual time=0.0382..75.3 rows=240124
loops=1)
 -> Covering index scan on d using dept_name (cost=1.15 rows=9) (actual
time=0.0163..0.0195 rows=9 loops=1)
 -> Covering index lookup on de using idx_dept_emp_to_date (to_date=DATE'9999-01-01',
dept_no=d.dept_no) (cost=1.15 rows=9.53) (actual time=0.0069..6.96 rows=26680 loops=9)

Database Scaling

11

mysql> SHOW GLOBAL STATUS LIKE 'Innodb_buffer_pool_read%';
. . .
| Innodb_buffer_pool_read_requests | 4910464 |
| Innodb_buffer_pool_reads | 3144 |

mysql> SELECT d.dept_name, COUNT(*) AS employee_count FROM dept_emp de JOIN departments d ON
de.dept_no = d.dept_no WHERE de.to_date = '9999-01-01' GROUP BY de.dept_no;
. .
9 rows in set (0.138 sec)

mysql> SHOW GLOBAL STATUS LIKE 'Innodb_buffer_pool_read%';
. . .
| Innodb_buffer_pool_read_requests | 5112188 |
| Innodb_buffer_pool_reads | 3144 |

Database Scaling

12

Database Scaling

13

[ec2-user@ip-10-0-16-172 fosdem]$ sudo perf stat -p $(pidof mysqld) -- mysql -e "SELECT . . .

 Performance counter stats for process id '5981':

 136.34 msec task-clock # 0.954 CPUs utilized
 33 context-switches # 242.050 /sec
 3 cpu-migrations # 22.005 /sec
 5795 page-faults # 42.506 K/sec
 <not supported> cycles
 <not supported> instructions
 <not supported> branches
 <not supported> branch-misses

 0.142859932 seconds time elapsed

Database Scaling - QPS

14

Readyset

Readyset

16

● Based on MIT PHD Thesis - Partial State in Dataflow-Based Materialized Views

(Noria) by Jon Gjengset

● https://github.com/readysettech/readyset

● Core / Cloud

● No application code changes / Wire compatible with MySQL & PostgreSQL

● Automatic cache maintenance / No TTL

● https://www.youtube.com/watch?v=ch0utkJqJZQ

https://github.com/readysettech/readyset

Database Scaling - Readyset

17

readyset> SELECT d.dept_name, COUNT(*) AS employee_count FROM dept_emp de JOIN departments d ON
de.dept_no = d.dept_no WHERE de.to_date = '9999-01-01' GROUP BY de.dept_no;
+--------------------+----------------+
| dept_name | employee_count |
+--------------------+----------------+
Customer Service	17569
Development	61386
Finance	12437
Human Resources	12898
Marketing	14842
Production	53304
Quality Management	14546
Research	15441
Sales	37701
+--------------------+----------------+
9 rows in set (0.000 sec) ← FR https://bugs.mysql.com/bug.php?id=117270

https://bugs.mysql.com/bug.php?id=117270

Database Scaling - Readyset

18

[ec2-user@ip-10-0-16-172 ~]$ sudo perf stat -p $(pidof readyset) -- mysqlr -e "SELECT ...

 Performance counter stats for process id '58344':

 0.65 msec task-clock # 0.005 CPUs utilized
 7 context-switches # 10.847 K/sec
 0 cpu-migrations # 0.000 /sec
 0 page-faults # 0.000 /sec
 <not supported> cycles
 <not supported> instructions
 <not supported> branches
 <not supported> branch-misses

 0.142028280 seconds time elapsed

Database Scaling - QPS

19

Database Scaling - Scaling Down

20

MySQL on c6.4xlarge (16 vCPUs) - $0.612 / Hour
MySQL delivers each query in 136.34ms and a max capacity of 117.35 QPS

Readyset on c6a.large (2 vCPUs) - $0.0765 / Hour
Readyset delivers each query in 0.65ms and a total of 24,615 QPS (16 vCPUS) - 3,076.92 QPS (~26x)

MySQL: $5,360.88/year
ReadySet: $670.14/year
Improvement: ~8x cheaper for ReadySet while
delivering 26x improvement in QPS and 209x
improvement in latency.

Readyset
Demo

Big Idea

22

Examples:

● Deepseek vs Big LLM
● DuckDB vs Big Data Distributed

Systems

Generalized solution ! Common Scenarios

Cost of Generalization is high

● Query parsing, execution complexity
● Replication units are complex

Augment with a smart Query Cache for Cost
and Performance benefits.

Big Idea: Key observations about Web Application
Workloads

23

● Queries often follow a Zipfian distribution
● Read heavy workloads. Infrequent changes. Eventual consistency is okay.

ProxySQL &
Readyset

Deployed how you need it, with all the same
performance benefits, no replication lag, and
substantial cost improvements.

Performant and cost-effective read replica

https://proxysql.com/ preFOSDEM MySQL Belgian Days 2025

A powerful, open-source proxy layer
between your applications and MySQL
servers.

Acts as an intermediary, optimizing query
routing, enhancing performance, and
improving database efficiency.

Increased Performance: Faster query execution
and reduced latency.

Improved Scalability: Handles growing traffic
demands effectively.

Enhanced Reliability: Minimizes downtime and
ensures business continuity.

Simplified Management: Streamlines database
administration tasks.

ProxySQL The Intelligent MySQL Proxy

ProxySQL & Readyset

27

Open Source

● Scheduler - https://github.com/readysettech/proxysql_scheduler

● Automatic Query Caching

● Cache Warm-up

ProxySQL + Readyset On the Cloud

● Announcing ProxySQL + Readyset on Readyset.cloud

https://github.com/readysettech/proxysql_scheduler

Case Study

Case Study

● Leading Marketing Platform
○ Number of read replicas reduced from

8 to 2 resulting in thousands of dollars
in cost savings per month

○ In-production since August 2024
○ “40,000 queries disappeared from the

[primary database] server and they
were literally nano-second response
times with Readyset” - Head of Platform

● B2B Telecommunication Solution
○ Customer using Readyset Private in a

local setup
○ Managed to reduce workload on a 96

core server at 80% capacity to 18% with
a single 12 core, 10GB Readyset server

○ “I tried to turn Readyset off. I could not!”
- Sr. Software Engineer

Primary AWS Aurora instance before and after
Readyset - Source

https://readyset.io/blog/clickfunnels-uses-readyset-to-reduce-its-ever-increasing-database-workload-boost-query-performance-for-applications

Summary

30

Happy Hour
Hosted by Readyset

Saturday 1st Feb - 6PM

@Au Bassin

RSVP - https://bit.ly/ReadysetRSVP

Thank You!

