
Atomic Distributed Transactions
In Vitess

Harshit Gangal
Software Engineer

Manan Gupta
Software Engineer

Achieving Atomic Commits across
shards

Background

● Multi Commit
● Strict Single Mode
● Consistent Lookup Vindex
● Need for Atomic Cross Shard Commit

- Best Effort Commit
- Commit in a sequential shard order
- Failures reported with shard information
- Application-Level Rollback/Rollforward
- Single shard transactions are ACID

Background

● Multi Commit
● Strict Single Mode
● Consistent Lookup Vindex
● Need for Atomic Cross Shard Commit

- Restrict Transactions to Single Shard
- Rollbacks on Cross Shard

Background

● Multi Commit
● Strict Single Mode
● Consistent Lookup Vindex
● Need for Atomic Cross Shard Commit

- Global Secondary Index
- Open Cross-shard Transaction
- Uses Locking and Transaction sequence

Background

● Multi Commit
● Strict Single Mode
● Consistent Lookup Vindex
● Need for Atomic Cross Shard Commit

- Reduce Application complexity
- Handle failure modes

Two-Phase Commit

● Transaction Coordinator
● Resource Manager

Overview

Two-Phase Commit
Guarantees

● Prepare Protocol
● Never abort a transaction, unless requested
● Never refuse a commit
● After a crash, reinstate transaction to its prepared state on recovery

Two-Phase Commit
Guarantees

● Prepare Protocol
● Never abort a transaction, unless requested
● Never refuse a commit
● After a crash, reinstate transaction to its prepared state on recovery

● MySQL
● Transaction does not abort

● High connection wait timeout
● No TCP connection

● Commit almost never fails
● No group replication

● Need for Transaction Logs for crash recovery

Vitess Architecture

RM RM

TC

● Generate Unique Distributed
Transaction ID DTID

● One of Participating VTTablet takes
role of Metadata Manager

● Persist the transaction metadata in a
separate autocommit transaction

Two Phase Commit Flow
Create Transaction Record

● VTTablet persists the transaction logs
in separate autocommit transaction

● Moves open transaction out of
transaction timeout scope

Two Phase Commit Flow
Prepare

● Metadata Manager marks the
transaction status to Commit on same
transaction

● Commits the open transaction

Two Phase Commit Flow
Start Commit

● Commits all the prepared transactions

Two Phase Commit Flow
Commit Prepared

● Removes the Transaction Record

Two Phase Commit Flow
Conclude Transaction

Transaction Resolution Watcher

● Handling unresolved transactions
● Transaction State

● Commit
● Rollback
● Prepare

Transaction Resolution Watcher

● Handling unresolved transactions
● Transaction State

● Commit
● Rollback
● Prepare

Transaction Resolution Watcher

● Handling unresolved transactions
● Transaction State

● Commit
● Rollback
● Prepare

Design Benefits

● Zero impact single shard transactions

● Stateless coordinator model

● Avoiding prepare phase of Metadata Manager

● Relaxed Isolation for scalability

Resilience During
Disruptions

MySQL Restarts

● All Ongoing Connections Dropped!
○ This includes all Prepared Transactions

● MySQL starts in Super_Read_Only state

VTTablet Restarts

● Similar to MySQL restart.
● All connections dropped

● VTTablet starts in non-serving state

VTGate Restarts

● Nothing to do!

● Transaction resolution watcher takes care of it!

OnlineDDL

● Cannot have any prepared transactions
dependent on the old schema.

● Use query rules to tie everything together.

MoveTables and Reshard

● Very similar solution to OnlineDDL

● Add query rules to fail new queries and prepared transactions

● Wait for open prepared transactions

● Remove the query rule.

VTTablet State
Diagram

Monitoring

Monitoring - VTAdmin UI

Monitoring - VTAdmin UI

Monitoring - MySQL Query

● In case of a commit failure, `SHOW WARNINGS` can be used to retrieve the dtid.

Monitoring - Metrics & Stats VTGate

● CommitUnresolved - Count of transactions that failed during Commit.

● CommitModeTimings - Timings for how long the commit phase takes to complete.

Monitoring - Metrics & Stats VTTablet)

● QueryTimings - Timings of individual phases of 2PC CreateTransaction, Prepare,
StartCommit, SetRollback, CommitPrepared, RollbackPrepared and Resolve.

● Unresolved - Gauge of number of transactions running longer than the abandon age.

Testing

Testing - Challenges

● Ensure everything works as expected.

● Disruption handling code should preserve all the 2PC guarantees

● To test the code, we need a reliable way to inject errors!

Go Build Tags To The Rescue

Go Build Tags To The Rescue

Comprehensive Testing

● Unit Testing

● Disruptions handling tests using gobuild trick to inject delays and ensure guarantees are
still met.

● Other miscellaneous end to end tests for metrics, UI, etc.

● Fuzzer testing for extended reliability and to find unknown cases!
○ This worked very well for us in the past with foreign keys work.

Fuzzer Testing Ideas Explained

● Multiple threads running distributed transactions.
● We want to check theyʼre all atomic.
● Another thread running disruptions.
● twopc_fuzzer_insert and twopc_fuzzer_update tables we use.
● Each transaction inserts a row in the first table, and updates a row in the latter table in all

the shards.
● For the insertion, we have an auto-increment column. For the update, we have a column

that we increment with a random value, but it is same across all the shards.
● Check atomiticity by ensuring that column in twopc_fuzzer_update matches in all shards.
● Check order of commit by ensuring that for each thread, the order of auto increment

column matches in twopc_fuzzer_insert in all the shards.

Fuzzer Testing - Example Run
40 4080 80

twopc_fuzzer_insert

thread_id auto_inc

twopc_fuzzer_insert

thread_id auto_inc

twopc_fuzzer_insert

thread_id auto_inc

twopc_fuzzer_update

update_val

0

twopc_fuzzer_update

update_val

0

twopc_fuzzer_update

update_val

0

Fuzzer Testing - Example Run
40 4080 80

twopc_fuzzer_insert

thread_id auto_inc

1 1

twopc_fuzzer_insert

thread_id auto_inc

1 3

twopc_fuzzer_insert

thread_id auto_inc

1 1

twopc_fuzzer_update

update_val

23

twopc_fuzzer_update

update_val

23

twopc_fuzzer_update

update_val

23

Fuzzer Testing - Example Run
40 4080 80

twopc_fuzzer_insert

thread_id auto_inc

1 1

2 2

twopc_fuzzer_insert

thread_id auto_inc

1 3

2 4

twopc_fuzzer_insert

thread_id auto_inc

1 1

2 3

twopc_fuzzer_update

update_val

123

twopc_fuzzer_update

update_val

123

twopc_fuzzer_update

update_val

123

Fuzzer Testing - Example Run
40 4080 80

twopc_fuzzer_insert

thread_id auto_inc

1 1

2 2

twopc_fuzzer_insert

thread_id auto_inc

1 3

2 4

twopc_fuzzer_insert

thread_id auto_inc

1 1

twopc_fuzzer_update

update_val

123

twopc_fuzzer_update

update_val

123

twopc_fuzzer_update

update_val

23

Fuzzer Testing - Example Run
40 4080 80

twopc_fuzzer_insert

thread_id auto_inc

1 1

2 2

twopc_fuzzer_insert

thread_id auto_inc

2 3

1 4

twopc_fuzzer_insert

thread_id auto_inc

1 1

2 3

twopc_fuzzer_update

update_val

123

twopc_fuzzer_update

update_val

123

twopc_fuzzer_update

update_val

123

Future Enhancements

● Read Isolation Guarantee

● Distributed Deadlock Avoidance

