
MySQL HeatWave Lakehouse
Analytics at the Speed of Thought

Cagri Balkesen, Ph.D.
Architect, MySQL HeatWave
January 31, 2025

The following is intended to outline our general product direction.
It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release,
timing, and pricing of any features or functionality described for
Oracle’s products may change and remains at the sole discretion
of Oracle Corporation.

Safe harbor statement

Copyright © 2025, Oracle and/or its affiliates

Unprecedented increase in volume of data

OLTP

SQL Analytics /
OLAP

Machine Learning

External Tables

Data Lake

Unstructured Data

> 80%
of the data

MySQL

17
5Z
B

 –
 G

lo
ba

l d
at

as
ph

er
e

by
 2

02
5—

ID
C

HeatWave
Warehouse

MySQL

HeatWave
AutoML

HeatWave
Lakehouse

HeatWave
VectorDB

GBs

TBs

PB

HeatWave —OLTP, OLAP, ML, Lakehouse, GenAI, Vector Store

Copyright © 2025, Oracle and/or its affiliates

Transactions, real-time analytics across data warehouse and data lake, machine learning, GenAI in one database service

Queries Results

Social, eCommerce, IoT, gaming, fintech apps
Analytics/ML/GenAI tools

Object Storage

Database
exports

Database
exports

Streaming
data

Data Sources

Enterprise
Apps

Web/Social

Log files

IoT

MySQL database

HeatWave

OLAPOLTP Autopilot Vector store GenAIAutoML

HeatWave Lakehouse
Architecture Overview

5

Base Table in
MySQL/InnoDB

Data Lake /
External Sources

HeatWave
compute

Object Storage

HeatWave Scale
Out Storage

Data from other
sources in HW

format

MySQL data
in HW format

SQL
Queries

Query
Results

External table

Primary engine

Auto schema

• Fast & scalable data load from object store
• External source to internal HW format transformation
• Automatically collects statistics for query performance

• Introduction of external table concept
• HeatWave as the primary engine for data lake
• Automatic schema inference for external tables

HeatPump
HeatPump

HeatPump

HeatWave Lakehouse Table Interface
Extensible and MySQL compatible

> CREATE TABLE tbl_name <create_definition> ENGINE=LAKEHOUSE
 ENGINE_ATTRIBUTE=‘<engine_options>’
 SECONDARY_ENGINE=RAPID;

Provides Lakehouse-specific functionality with existing syntax and is extensible
• External source file locations specified in extensible JSON interface through the standard MySQL ENGINE_ATTRIBUTE
• Compatible with existing systems, such as Snowflake, Databricks to allow easy migration to Heatwave

ENGINE_ATTRIBUTE=‘{
 "location":{"object_storage_provider": default | aws | oci,

 "mode": "cloud_parameters" //default if object_storage_provider is OCI |

 "uri" //default if object_storage_provider is AWS }

 "file": [file1, file2, …],

 ”dialect": { “format”= ”csv"|”parquet”|”avro”,

 "field_delimiter": ",", "record_delimiter": "\n",

 "escape_character": "\","quotation_marks": "\"", "skip_rows": "0",

 "encoding": "UTF-8", "date_format": ”auto", "time_format": ”auto” }
}

“bucket”: “test-bucket”
“namespace”: “lrsrfayerklw”
“region”: “uk-London-1”
“prefix”: “src_data/customer.csv”

s3://<bucket>/prefix

“par”: “https://objectstorage.uk-london-
1.oraclecloud.com/n/lrsrfayerklw/b/baumeister-
test-bucket,src_data/customer.csv”

cloud_parameters

uri

A new primary engine Lakehouse serves as an interface for data in object store

Copyright © 2025, Oracle and/or its affiliates

Fully compatible SQL syntax
Steps to query data in object store

1. Run MySQL Autopilot:
mysql> CALL sys.heatwave_load(@db_list, @options);

2. Execute generated DDLs:
mysql> CREATE TABLE `cust1DB`.`Sensor` (date DATE, degree INT) ENGINE=LAKEHOUSE SECONDARY_ENGINE=RAPID
 -> ENGINE_ATTRIBUTE = '{"file": [{"prefix": ”src_data/sensor1-April.csv", "par": "<PAR URL>"}]}';
mysql> ALTER TABLE `cust1DB`.`Sensor` SECONDARY_LOAD;

mysql> ALTER TABLE SALES SECONDARY_LOAD;

3. Execute Query:
mysql> SELECT count(*) FROM Sensor, SALES WHERE Sensor.degrees > 30 and Sensor.date = SALES.date;

HW NodeHW Node
HeatWave

MySQL
Plugin

Bucket prefix containing CSV files:
 src_data/sensor1-April.csv

Object Store

HW NodeHeatWave
Nodes

Copyright © 2025, Oracle and/or its affiliates

HeatWave Lakehouse: Scale-out load

H
ea

tP
um

p
H

ea
tP

um
p

H
ea

tP
um

p
H

ea
tP

um
p

Object Store

User’s bucket

HW storage

Table data in
HW format

SQL
Queries

Query
Results

Ingest and query data from data lakes in object store

Completely parallel and distributed load across cluster

InnoDB

Source files

Copyright © 2025, Oracle and/or its affiliates

HeatWave Lakehouse scales all the way to 500 TB

*Benchmark data are derived from TPC-H benchmarks, but results are not comparable to published TPC-H benchmark results since these do not comply with TPC-H specifications

0

5

10

15

20

25

30

35

40

45

Lo
ad

 T
im

e
(h

ou
rs

)

500 TB TPC-H*

MySQL HW Lakehouse
(512 nodes)

Redshift
(30 x ra3.16xlarge)

Sowflake
(4X-Large cluster)

Databricks
(3X-Large cluster)

Google BigQuery
(6400 slots)

9.3x
slower

2.1x
slower

5.8x
slower

8.7x
slower

SuperChunking*: Dynamic task distribution technique to balance work across nodes & cores
Scaling Load Performance

N2

C1 C2

C3 CN…

N1

C1 C2

C3 CN…

N3

C1 C2

C3 CN…

NM

C1 C2

C3 CN…

…

Compute
Nodes

Data

The load processing scales and is balanced across the nodes
* patent in-progress

Balancing
Work

K Tasks

B batches of K tasks each

Dynamic Distribution
B >> #nodes
K >> #cores

Copyright © 2025, Oracle and/or its affiliates

Key innovations maintain parity across file formats

CSV Parquet Avro DB Exports

Properties Row major text format Hybrid-columnar fmt Row major binary fmt Vary based on fmt

Data Load Speculative distributed
parsing

Distribution of work at
row-group granularity

Distribution of work at
block granularity

Depends on export
format of the system
(Redshift, Aurora, MySQL)

Aggregation and
validation of speculation
with high success rate

Incremental processing
and caching of column
chunks

Parallelization by
speculation for sync
markers across blocks

Techniques apply
based on format

Data Query Converted into internal HeatWave format delivering identical performance

Feature Set Extensive configurability
through dialect options

Support any practical
row-group size

Support for blocks as
large as 64 MB

Features apply based
on format

Lakehouse source data can various file formats

Copyright © 2025, Oracle and/or its affiliates

Load and Query performance across file formats

100 TB TPCH CSV Parquet Avro

Configuration 100 Nodes 100 Nodes 100 Nodes

Load Time (hrs) 2.8 2.8 2.74

Geomean Query
Time (sec) 26.33 26.23 26.85

Total Query Time
(sec) 921 920 933

Copyright © 2025, Oracle and/or its affiliates

Lakehouse support for semi-structured data

• JSON data in CSV, Parquet, and Avro file formats can also be processed by HeatWave

• Support extended to newline-delimited JSON files
• Ease of parsing and streaming has made it the most popular JSON format

• NDJSON data ingestion and processing scales similarly to structured file formats

Copyright © 2025, Oracle and/or its affiliates

…
{ “name”: “Jane”, “academics”: { "undergraduate": "MIT", "graduate": "UT Austin” }, "age": 24 }
{ “name”: “Jill”, “academics”: { "undergraduate": ”Madison", "graduate": ”Stanford” }, "age": 27 }
…

Example NDJSON file

Lakehouse over object store performance within 5% of in-DB OLAP performance
Statistics is key for query performance

HeatWave
MySQL
Plugin

1. Aggregate
statistics – N1

internal/DBNAME_SCHEMANAME/data/
(N partitions per HeatPump process)

2. Statistics aggregated 3. Statistics & data available for queries

P1 P2

P3 P4

N1

C1 C2

C3 CN…

N1

C1 C2

C3 CN…

2. Fetch
local stats

3. Write
aggregated
statistics

Aggregated stats

∑

HeatWave
MySQL
Plugin

internal/DBNAME_SCHEMANAME/data/
(N partitions per HeatPump process)

N2

C1 C2

C3 CN…

N1

C1 C2

C3 CN…

P1 P2

P3 P4 Aggregated stats

∑

1. Local statistics computed on-the-fly during transform

0

20

40

60

80

100

120

HeatWave HeatWave Lakehouse Snowflake Amazon Redshift Google Big Query Databricks

Q
ue

ry
 ti

m
e

(s
ec

on
ds

)

Query execution time: 10 TB TPC-H

47 seconds

59 seconds

1.3 minutes

1.75 minutes

Same performance for data in DB or in object store
Develop applications with data on object store without any performance impact

14 seconds 14 seconds

Benchmark queries are derived from the TPC-H benchmarks, but results are not comparable to published TPC-H benchmark results since these do not comply with the TPC-H specifications.
Configuration: MySQL HeatWave Lakehouse: 512 nodes; Snowflake: 4X-Large Cluster; Databricks: 3X-Large Cluster; Amazon Redshift: 20-ra3.16xlarge; Google BigQuery: 6400 slots

Copyright © 2025, Oracle and/or its affiliates

Partial query execution in HeatWave for data in object store
Execute part of the query in HeatWave, rest in MySQL

16

MySQL
Queries

Query
Results

HW unsupported

GraalVM/Javascript

HW supported

HeatWave AutoML

MySQL

JavaScript
execution

MySQL Node

HeatWave Cluster

Sub-query in HeatWave

Remaining sub-query
executed on MySQL server

SQL
execution

Necessary
data
transferred

Copyright © 2025, Oracle and/or its affiliates

How do we achieve partial query execution with HeatWave Lakehouse

17

HeatWave

MySQL
Queries

Query
Results

• When “partial-execution” is needed, the Lakehouse engine provides access to Lakehouse tables via standard
MySQL storage engine interfaces .

Some in HeatWave:

Partial in MySQL

MySQL Query Engine
Standard MySQL
engine interface:

• Start scan (rnd_init)
• Next row (rnd_next)
• End scan (rnd_end)

Lakehouse Plugin
• Prepares table scan HW query
• Executes query on HW nodes
• Converts result in MySQL fmt
• Buffers results and provides

them to MySQL row-at-a-time
HeatWave

Compute Nodes
Receives a query plan,
a subset of the overall
query, and executes it

HW-unsupported,
e.g., spatial query

GraalVM/Javascript

HW offloadable

HeatWaveML

Copyright © 2025, Oracle and/or its affiliates

• Feature: Lakehouse table data is updated to reflect modifications in user data
• Provides 1-to-1 mapping between user data and Lakehouse table data at any point in time
• Only delta in user data is applied incrementally over existing table data

Incremental data load in Lakehouse tables

1-to-1 mapping

Object Storage

File 1 File 2 File 3

customer source bucket

HeatWave

File 4

File 2

Unit of Change
=

File

Incremental data load in Lakehouse tables
Scale-out delta ingestion

• Granularity of data update is an object corresponding to thousands of records

• User data change detection: On user-initiated SQL command, user data change is detected
• Objects in user buckets can be added, deleted, or updated
• Delta computed comparing current list of objects with the list from the last table load or incremental load

• Delta apply design: Treat each object as a new horizontal slice of the table
• Objects added or updated are transformed and ingested in a scale-out manner across HeatWave cluster like table load

• Bulk-inserts scale: HeatPump parallelism at inter-file & intra-file levels

• Objects deleted – fast in-memory operation of dropping a table slice by updating table version

object 1

…

object 3

object 5

object 2

object 4 Object
Store

HeatPump
Transform

…

HeatWave table

new
slice 1

new
slice N

Transformed
data

…

object 1 == slice 1

slice N

Txn

Export transformed data to Object Store
Massively parallel write to object store with the multi-node & multi-core parallelism of HeatWave

SELECT embedding, metadata
INTO OUTFILE
PREFIX <object prefix>
FORMAT <file format>

HeatWave Tables

Query
results

Write query
results in
parallel

User Bucket

Export query results

number of
rows exported

3 1 9 6

{ ... }

HeatWave

Query offloaded
to HeatWave

Copyright © 2025, Oracle and/or its affiliates

MySQL Autopilot - Auto Parallel Load in Action
Automatically generated schema from data in files by AutoPilot

DDL to create non-existing DBs

Load command

DDL to create non-existing
tables
• Using inferred column types

• Length

• Precision

• Setting engines

• Setting engine attribute

• Can extract column names

Copyright © 2025, Oracle and/or its affiliates

Scale out Autopilot with adaptive sampling

Er
ro

r
%

Sample Size

0.01% 0.1%

…
Each color carries
different statistics

Autopilot Adaptive sampling
Autopilot

TPCH Data set (TB) Lineitem Autopilot
schema inference time(s)

1 TB 8s

10 TB 8s

30 TB 13s

100 TB 15s

250 TB 25s

500 TB 47s

Data

SAMPLE DATA UNTIL COLLECTED STATISTICS STABILIZE

• Autopilot sampled processing is scaled out and balanced across the nodes, similar to actual load.
• If the data set is relatively uniform, a single node is enough to process 100s of TBs of data.

Copyright © 2025, Oracle and/or its affiliates

Native Vector Processing in MySQL HeatWave

New distance function for similarity search
• L1/MANHATAN
• L2/EUCLIDIAN
• L1^2/MANHATAN_SQUARED
• L2^2/EUCLIDIAN_SQUARED
• COSINE
• DOT
• HAMMING

mysql> CREATE TABLE wikipedia (
title VARCHAR(1024),
page_data TEXT,
page_url TEXT,
page_embedding VECTOR(1024));

mysql> SELECT page_url,
 DISTANCE(page_embedding,
 @query_embedding, “COSINE")
 as distance
 FROM wikipedia
 ORDER by distance DESC LIMIT 10;

Vector as
first-class
data type

MySQL
query
syntax

• MySQL & HeatWave supports new Vector data type
• In-memory hybrid-columnar storage format for vector columnsVector Datatype

• Leverage SIMD instructions for vector processing
• Processes at near memory bandwidth Vector Processing

Scale out Vector Store creation with HeatWave Lakehouse
Parse source files with OutsideIn (OIT) and concurrent embedding generation across nodes

Copyright © 2025, Oracle and/or its affiliates

HeatWave StorageCustomer Bucket HeatWave Cluster

Lakehouse
Vector Store table

OIT
Parser Read

SegmenterOIT
Parser Read

OIT
Parser Read

Segmenter

Segmenter

Encoder

Encoder

Encoder

Table
generation

Table
generation

Table
generation

Distribute

Segments

across

HeatWave

cluster

• HeatWave Lakehouse is part of a converged single system for OLTP, SQL Analytics, ML,
Data Lake and Vector store

• The performance and cost advantages of the HeatWave analytics system is expanded for
massive amounts of data (up to ⁄! "	PBs of data, 512-nodes)
• Data load performance is already ahead of the competition
• Query performance is at par with HeatWave Data Warehouse

• Provides important differentiation from the competition
• Query support across OLTP / Data Warehouse & Data Lake
• Automatic schema inference for exploratory analysis
• ML-based automation features via Autopilot
• HeatWave AutoML & Vector Processing on object store resident files

Conclusions

Copyright © 2025, Oracle and/or its affiliates

Thank you

Copyright © 2025, Oracle and/or its affiliates

