
MySQL HeatWave
A Deep Dive Into Architecture and Optimizations

Cagri Balkesen, Ph.D.
Architect, MySQL HeatWave
January 31, 2025

The following is intended to outline our general product direction.
It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver
any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release,
timing, and pricing of any features or functionality described for
Oracle’s products may change and remains at the sole discretion
of Oracle Corporation.

Safe harbor statement

Copyright © 2025, Oracle and/or its affiliates

MySQL users have needed separate systems for OLTP and OLAP

OLTP Applications

OLAP Applications

OLTP DB

OLAP DB

ETL Service

3 Copyright © 2025, Oracle and/or its affiliates

OLTP, OLAP/analytics, and ML in one cloud database service – without ETL
MySQL HeatWave

HeatWave Node 0

c0 c1

c2 c3

c30 c31

512GB

HeatWave Node 1

c0 c1

c2 c3

c30 c31

512GB

HeatWave Node 63

c0 c1

c2 c3

c30 c31

512GB

HeatWave Cluster

- Single MySQL database for OLTP & analytics applications
- Extreme performance & scalability to hundreds of nodes, thousands of cores

Copyright © 2025, Oracle and/or its affiliates

• Multi-year research project out of Oracle
Labs with several publications (SIGMOD’18,
MICRO’17, BigData’16, ICDE’16) and patents

• Project RAPID: Initial research project
focused on software-hardware co-design
with power/performance efficiency

• Scalable software design and architecture
completely tech transferred to HeatWave

• Further SW enhancements and cloud
tuning to compensate the lack of
specialized hardware

The Research Background on HeatWave

Copyright © 2025, Oracle and/or its affiliates

Slide from SIGMOD 2018

Query Processing Architecture

HeatWave Server

Query Execution

Query/Job Scheduler

Setup for Execution

MySQL

Users queries
(unaltered)

SQL Query Compiler

Query Optimization Pushdown

Results

Results

HeatWave Cluster

Copyright © 2025, Oracle and/or its affiliates

Copyright © 2025, Oracle and/or its affiliates

MySQL HeatWave Analytics/OLAP Engine
Architected for massive scale & performance

1
2
3

Massive inter- and intra-node parallelism optimized for cloud (OCI & AWS)

Distributed query processing algorithms (state-of-the art, based on research)

In-Memory, hybrid columnar processing

7

Copyright © 2025, Orale and/or its affiliates

1. In-Memory hybrid columnar processing

pa
rt

iti
on

 1
pa

rt
iti

on
 P

. .
 .

. .
 .

chunk M

chunk 1

. . .

co
lu

m
n

1

co
lu

m
n

3

ve
ct

or
 1

co
lu

m
n

2

ve
ct

or
 2

co
lu

m
n

N

ve
ct

or
 3

ve
ct

or
 N til

e
1

til
e

K

Horizontal
scalability

8

Vectorized
execution

Multi-core
scalability

Copyright © 2025, Oracle and/or its affiliates

2. Massively parallel architecture

• High-fanout workload-aware partitioning
• Machines & CPU cores can further process partitioned data in parallel
• Optimized for cache size and memory hierarchy of underlying hardware

CPU
Core

CPU
Core

CPU
Core

Pa
rt

it
io

n

R
es

ul
ts

9

Copyright © 2025, Oracle and/or its affiliates

3. Distributed algorithms optimized for cloud (OCI & AWS)

Process partitions as
fast as possible

• Highly vectorized build &
probe join kernels

• Hardware-conscious,
hand-tuned primitives
(e.g. using wide SIMD,
AVX2 registers)

Partition data to fit
into cache

• Partition at near memory
bandwidth with shape
specific optimizations (e.g.
hash computation)

• Ensure partitions reside in
CPU cache

Overlap compute
with communication

• Network optimizations for
cloud (OCI) interconnect

• Intelligent scheduling of
execute & transfer

10

State-of-the-Art Vectorized Hash Join

Each CPU core executes a join kernel between small R and S partitions
Hash tables are typically compact and fits into lower level CPU caches

k
S

h1(key)
.
.
.

1

p

.

.

.

.

.

.

R

h1(key)

1

p

k

.

.

.

① Partition ① Partition② Build ③ Probe

h2(k)

join kernel

C. Balkesen; J. Teubner; G. Alonso; M. T. Özsu, Main-memory hash joins on multi-core CPUs: Tuning to the underlying hardware, IEEE ICDE 2013

Distributed Relational Join using Vectorized Hash Join Kernels

QUERY
SELECT L_LINENUMBER, L_DISCOUNT
FROM LINEITEM JOIN ORDERS ON L_ORDERKEY = O_ORDERKEY
WHERE O_ORDERDATE = ’2022-04-12’
ORDER BY L_LINENUMBER;

Node 1
LINEITEM ORDERS

1,…

5,...

4,…

2,...

Node 2
LINEITEM ORDERS

3,...2,...

Node 3
LINEITEM ORDERS

4,… 5,...

3,... 1,...

System Partitioning Over Network

LINEITEM ORDERS

1,… 2,...

1,...

LINEITEM ORDERS

3,...

2,...

LINEITEM ORDERS

4,…

5,...5,...

4,…

3,...

Local Partitioning. Why?
1. Multicore Parallelism
2. Cache Locality

Copyright © 2025, Oracle and/or its affiliates

How much do we need to partition?

ORDERS

1,...
1. Hash Table Build

Slot Value

1 6

2 3

3 5

4 7

… …

LINEITEM

1,…
2. Hash Table Probe

Thread-Local Hash Join

Heavy Random Access

• Cache misses are very costly in the hot loop.
• We want the hash table to fit L1 cache (64KB).

Back of the envelope
• Orders Table: key column is 8B integers, 768 Billion rows: 6.1TB
• 6.1TB / 64KB = ~96 Million Partitions
• Next power of two: 2^27, a partitioning fanout of 134 Million

Copyright © 2025, Oracle and/or its affiliates

Data Partitioning Problem: Where is the bottleneck?

foreach tuple t in relation R:
 p = hash(t.key)
 partitions[p][counts[p]++] = t

• p is random and will cause heavy random access.
• In case the range of p is high (high fanout), chances of TLB misses are high.

TLB (Translation Lookaside Buffer)
• A specialized cache for virtual-to-physical address translation.
• If a virtual address is not found, expensive page walk occurs.

• Can be even more expensive than simple cache miss; page walk might perform multiple memory accesses.
• Typical TLB has around 64-512 entries.
• Any partitioning fanout larger than 512 is likely to cause a huge performance impact.

Copyright © 2025, Oracle and/or its affiliates

Reducing the TLB bottleneck with SW-managed buffers [2]

foreach tuple t in relation R:
 p = hash(t.key)
 buffers [p][counts [p]++ % N] = t
 if (counts[p] % N == 0)
 copy buffers[p] to partitions[p]

[2] C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu. Multi-core, main-memory joins: Sort vs. hash revisited. PVLDB, 7(1):85–96, 2013

• Maintain smaller (i.e. cacheline size) buffers
per partition.

• Most of the writes happen to a small
number of pages; avoiding TLB misses.

• SW-managed buffers are a good
optimization for the TLB bottleneck, yet
higher partitioning fanout can still
cause a problem.

Memory-Conscious Query Processing
Operator Pipelining and Fusing

Expression

Bit-vector
Filter

Transcode/
Project

Join Probe

Join Build

Table Scan Table Scan

Task
boundary

Full intermediate
relation materialization
between task
boundaries!

vs.
SELECT … FROM
A LEFT JOIN B ON …
WHERE A + B > 10;

Expression

Bit-vector
Filter

Transcode/
Project

Join Build

Table Scan Table Scan

Task
boundary

Intermediate
relations
fully pipelined via
CPU cache

Join Probe

Copyright © 2025, Oracle and/or its affiliates

• Traditional caching techniques are not intelligent
• With Autopilot, system gets better as more queries are run
• 24TB TPC-H, TPC-DS performance improved by 40%

Optimizer learns and improves query plan based on queries executed earlier
Auto Query Plan Improvement

A B

C

⨝

⨝

Node Statistics

A 70

B 150

A ⨝ B 1000

C …

A ⨝ B ⨝ C …
A B

D

∪

⨝

Runtime statistics

Query Optimization: Holistic Optimization

Hypergraph Optimizer gets information from
HeatWave Optimizer per subgraph:
• Cardinality stats from previous runs.
• Cost model from HeatWave physical optimizer.

SELECT
s_name,
count(*) as numwait
FROM
supplier,
lineitem l1,
orders,
nation
WHERE
s_suppkey = l1.l_suppkey
and o_orderkey = l1.l_orderkey
and o_orderstatus = 'F'
and l1.l_receiptdate > l1.l_commitdate
and exists (
SELECT
*
FROM
lineitem l2
WHERE
l2.l_orderkey = l1.l_orderkey
and l2.l_suppkey <> l1.l_suppkey
)
and not exists (
SELECT
*
FROM
lineitem l3
WHERE
l3.l_orderkey = l1.l_orderkey
and l3.l_suppkey <> l1.l_suppkey
and l3.l_receiptdate > l3.l_commitdate
)
and s_nationkey = n_nationkey
and n_name = 'SAUDI ARABIA'
GROUP BY
s_name
ORDER BY
numwait desc,
s_name
limit
100;

TPC-H Query 21

Copyright © 2025, Oracle and/or its affiliates

Query Optimization: A Detailed Overview

SELECT
s_name,
count(*) as numwait
FROM
supplier,
lineitem l1,
orders,
nation
WHERE
s_suppkey = l1.l_suppkey
and o_orderkey = l1.l_orderkey
and o_orderstatus = 'F'
and l1.l_receiptdate > l1.l_commitdate
and exists (
SELECT
*
FROM
lineitem l2
WHERE
l2.l_orderkey = l1.l_orderkey
and l2.l_suppkey <> l1.l_suppkey
)
and not exists (
SELECT
*
FROM
lineitem l3
WHERE
l3.l_orderkey = l1.l_orderkey
and l3.l_suppkey <> l1.l_suppkey
and l3.l_receiptdate > l3.l_commitdate
)
and s_nationkey = n_nationkey
and n_name = 'SAUDI ARABIA'
GROUP BY
s_name
ORDER BY
numwait desc,
s_name
limit
100;

TPC-H Query 21
Logical Plan

Physical Plan

Logical plan decisions:
• Nodes are matched to

previous runs to obtain
accurate cardinality results
(filter selectivity, join
cardinality)

• Logical transformations
(subquery pushdown)

• …

Physical plan decisions:
• Join pattern (broadcast vs.

partitioned)
• Partitioning fanout / rounds
• Bloom filter attachment
• Data placement key
• …

Copyright © 2025, Oracle and/or its affiliates

HeatWave dramatically speeds up analytic queries: 400x Faster
Improvement over MySQL 8.0 on TPC-H queries (400G, 64 cores)

Q1 Q3 Q4 Q5 Q6 Q7 Q8 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q18 Q19 Q21 Q22
Geo

Mean
Speedup 675 403 186 756 1171 602 125 68 271 1938 1899 1661 1291 148 462 72 494 69 404

0

400

800

1200

1600

2000

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t Speedup

Copyright © 2025, Oracle and/or its affiliates

Copyright © 2025, Oracle and/or its affiliates

Single MySQL database for OLTP & analytics applications

All existing applications work without changes

Extreme performance: Accelerates MySQL for OLAP queries by orders of magnitude,
scales to thousands of cores

Dramatically faster and lower cost

MySQL HeatWave
MySQL database service with a massively-scalable integrated analytics engine

21

