
Matteo Casserini
Consulting Member of Technical Staff, Oracle

MySQL Belgian Days 2024

A Deep Dive into AutoML Capabilities
MySQL HeatWave ML

Matteo Casserini

• Working on ML and AI since 2011

• Joined Oracle in August 2018
• August 2018 – October 2023: Oracle Labs
• Since November 2023: MySQL HeatWave

matteocasserini

https://www.linkedin.com/in/matteocasserini/

3 Copyright © 2023, Oracle and/or its affiliates

Process data inside database as well as object storage
MySQL HeatWave Lakehouse

• Efficient support for analytics, machine learning, OLTP

• Helps with MySQL and non-MySQL workloads

• Scales to 512 nodes and can process 500TB of data

MySQL HeatWave

AutoMLAnalytics AutopilotOLTP

Object Storage

InnoDB

Database
exports

4 Copyright © 2023, Oracle and/or its affiliates

• Part of the resources of the HeatWave cluster available
for AutoML workloads

• Tables must be loaded to HeatWave memory before any
ML operations

• OLAP takes priority

Leverage HeatWave Cluster for ML Workloads

HeatWave cluster

5 Copyright © 2023, Oracle and/or its affiliates

In-database Management of the Entire Model Lifecycle!

• Fully automated ML with minimal number of required
parameters → no advanced ML/data science expertise
needed

• Data and ML model never leave the database

• Familiar SQL Interface

• Performance and Scalability

In-database Training, Inference and Explanation
HeatWave AutoML

Train

 Model

Load

 Model

 Explain

 Model

Results

Generate

 Inferences

Evaluate

 Model

6 Copyright © 2023, Oracle and/or its affiliates

HeatWave AutoML

Train

 Model

Load

 Model

 Explain

 Model

Results

Generate

 Inferences

Evaluate

 Model

7 Copyright © 2023, Oracle and/or its affiliates

Model training in machine learning usually requires
• Extensive computational resources

• Considerable ML expertise

HeatWave ML greatly enhances and simplifies this step
• High automation of model training for different tasks as

classification, regression, anomaly detection…

• User only needs to prepare training data containing key data
attributes for the relevant task

• Automatically perform all steps necessary for training
depending on the task: preprocess data, feature selection,
hyperparameter tuning and model selection

• Already creates the corresponding explanation model

• High-performing architecture that scales with the cluster
• 25x faster than Redshift

• Faster training → more frequent re-training → better quality

Model Training

Classification

Anomaly Detection

Time Series
Forecasting

Recommendation Regression

Identify similar users

Recommend movies Predict flight delay

Rainfall prediction

Loan default
prediction

Demand forecasting

Predict Advt Spend ROI

Identify game hacker

Detect anomalous
credit card spend

Object StoreMySQL

8 Copyright © 2023, Oracle and/or its affiliates

mysql> CALL sys.ML_TRAIN ('table_name', 'target_column_name', [options], model_handle);

'table_name': fully qualified name of the table containing the training dataset.

'target_column_name': name of the column in 'table_name' representing the target, i.e. ground truth values (required for some tasks).

[options]: optional training parameters as key-value pairs in JSON format.
• The most important parameter is 'task', which specifies the ML task to be performed (if not specified, 'classification' is assumed);
• Other parameters allow finer-grained control on the training task.

model_handle: user-defined session variable storing the ML model handle for the duration of the connection.

Examples:
mysql> CALL sys.ML_TRAIN('heatwaveml_bench.census_train', 'revenue', JSON_OBJECT('task', 'classification'), @census_model);

Model Training API

9 Copyright © 2023, Oracle and/or its affiliates

HeatWave AutoML

Train

 Model

Load

 Model

 Explain

 Model

Results

Generate

 Inferences

Evaluate

 Model

10 Copyright © 2023, Oracle and/or its affiliates

Model Management

The ML model generated by ML_TRAIN routine is stored in the Model Catalog

• Table MODEL_CATALOG within the user ML schema (ML_SCHEMA_<username>) created by ML_TRAIN

• Each row contains ML model + metadata

• ML models become 1st class citizens

• Can be integrated in standard DB procedures: backup, restore, encryption…

• Sharing models between users follows usual access control management

Model handles created by ML_TRAIN are also stored in the model catalog, so that they can be conveniently be re-
used (or reassigned to session variables) when the connection is terminated, e.g.

mysql> SET @my_model = (SELECT model_handle FROM ML_SCHEMA_user1.MODEL_CATALOG ORDER BY model_id DESC LIMIT 1);

11 Copyright © 2023, Oracle and/or its affiliates

Used to load the model in memory (required before model can be used, even immediately after ML_TRAIN!)

mysql> CALL sys.ML_MODEL_LOAD(model_handle, user);

model_handle: explicit model handle string or session variable containing the model handle.

user: MySQL user name of the model owner (if NULL, defaults to current user).

Examples:
mysql> CALL sys.ML_MODEL_LOAD('ml_data.iris_train_user1_1636729526', NULL);
mysql> CALL sys.ML_MODEL_LOAD(@iris_model, NULL);

Model Load/Unload API

12 Copyright © 2023, Oracle and/or its affiliates

Used to remove models from memory to free it up when they are not needed anymore

mysql> CALL sys.ML_MODEL_UNLOAD(model_handle);

model_handle: explicit model handle string or session variable containing the model handle.

Examples:
mysql> CALL sys.ML_MODEL_UNLOAD('ml_data.iris_train_user1_1636729526');
mysql> CALL sys.ML_MODEL_UNLOAD(@iris_model);

Model Load/Unload API

13 Copyright © 2023, Oracle and/or its affiliates

HeatWave AutoML

Train

 Model

Load

 Model

 Explain

 Model

Results

Generate

 Inferences

Evaluate

 Model

14 Copyright © 2023, Oracle and/or its affiliates

Model Evaluation

Before using models in production, best practice is to evaluate and test the model!

• Necessary to ensure model quality, in particular by evaluating its generalization performance (how well does it
perform on data unseen during training?)

• Requires a dataset with the same columns as the dataset used for training, but different data points

• Usual approach: randomly split the data available in a subset that will be used for training, and another that
will be used for testing

• Requires to choose an appropriate score metric

• No unique answer on the most appropriate metric, depends on the business need (e.g. prioritize low false
positive rate? Or rather detect as many true positive as possible?)

• Common choices: accuracy, f1-score

15 Copyright © 2023, Oracle and/or its affiliates

mysql> CALL sys.ML_SCORE(table_name, target_column_name, model_handle, metric, score, [options]);

'table_name': fully qualified name of the table containing the dataset used to compute model quality.

'target_column_name': name of the target column in 'table_name’ containing ground truth values.

model_handle: explicit model handle string or session variable containing the model handle.

metric: specifies which metric should be used to evaluate model quality. Different values can be used depending on ML task and
target variable (e.g. f1, precision, recall, roc_auc, f1_weighted, balanced_accuracy…).

score: user-defined session variable name storing the computed score for the duration of the connection.

[options]: a set of optional key-value pairs, can be specified only starting in MySQL 8.0.32 and only for some tasks.

Examples:
mysql> CALL sys.ML_SCORE('ml_data.iris_validate', 'class', @iris_model, 'balanced_accuracy', @score, NULL);

mysql> SELECT @score;
+--------------------+
| @score |
+--------------------+
| 0.958333313 |
+--------------------+

Model Score API

16 Copyright © 2023, Oracle and/or its affiliates

HeatWave AutoML

Train

 Model

Load

 Model

 Explain

 Model

Results

Generate

 Inferences

Evaluate

 Model

17 Copyright © 2023, Oracle and/or its affiliates

Model Inference

Apply trained model on new data points to generate inference results

HeatWave ML offers significant advantages:

• Inference performed in-database (where the data for inference resides)

• Inference scales with cluster size

2 different needs depending on application:

• Generate inference results for a single observation at a time

• Generate inference results for an entire table of observations

18 Copyright © 2023, Oracle and/or its affiliates

Stored function to generate in-line inference for one or more rows of data specified in JSON format

mysql> SELECT sys.ML_PREDICT_ROW(input_data, model_handle);

input_data: specifies data for which inference results should be generated. Must contain all columns used during ML_TRAIN
• If a single row: specify the row data in JSON format
• If multiple rows: specify the columns where data resides as key-value pairs in JSON format, and select from a table

model_handle: explicit model handle string or session variable containing the model handle.

Examples:
mysql> SELECT sys.ML_PREDICT_ROW(JSON_OBJECT("sepal length", 7.3, "sepal width", 2.9, "petal length", 6.3, "petal width", 1.8), @iris_model);

mysql> SELECT sys.ML_PREDICT_ROW(JSON_OBJECT("sepal length", iris_test.`sepal length`, "sepal width", iris_test.`sepal width`, "petal length",
iris_test.`petal length`, "petal width", iris_test.`petal width`), @iris_model, NULL) FROM ml_data.iris_test LIMIT 5;

Model Inference API

19 Copyright © 2023, Oracle and/or its affiliates

Stored procedure to generate inference for an entire table, saving the inference results in another table

mysql> CALL sys.ML_PREDICT_TABLE('table_name', model_handle, 'output_table_name'), [options]);

'table_name': fully qualified name of the table containing the input dataset.

model_handle: explicit model handle string or session variable containing the model handle.

'output_table_name': fully qualified name of the table where to store inference results. An error is thrown if the table already exists.

[options]: a set of optional key-value pairs, can be specified only starting in MySQL 8.0.32 and only for some tasks.

Examples:
mysql> CALL sys.ML_PREDICT_TABLE('ml_data.iris_test', @iris_model, 'ml_data.iris_predictions');

Model Inference API

20 Copyright © 2023, Oracle and/or its affiliates

HeatWave AutoML

Train

 Model

Load

 Model

 Explain

 Model

Results

Generate

 Inferences

Evaluate

 Model

21 Copyright © 2023, Oracle and/or its affiliates

Model Explanations

Explanations help understand which features have the biggest impact on a model’s decisions

2 types of model explainers in HeatWave ML

• Prediction explainers: generate explanations for specific inference results

• Allow to understand what features contributed the most to a model’s inference result for each specific data point

• Model explainers: identify features that had globally the most impact on a model (based on the training set)

• Allow to better understand the model characteristics

Explanations are generated as feature importances, ranging from -1 to 1:

• Magnitude indicates the strength of the feature impact;

• Sign indicates whether it contributes towards the prediction, or away from it.

22 Copyright © 2023, Oracle and/or its affiliates

Stored function to generate in-line explanations for one or more rows of data specified in JSON format

mysql> SELECT sys.ML_EXPLAIN_ROW(input_data, model_handle, [options]);

input_data: specifies data for which inference results should be generated. Must match exactly columns used during ML_TRAIN
• If a single row: specify the row data in JSON format
• If multiple rows: specify the columns where data resides as key-value pairs in JSON format, and select from a table

model_handle: explicit model handle string or session variable containing the model handle.

[options]: a set of optional key-value pairs, currently only supports prediction_explainer (model used to generate explanations).

Examples:
mysql> SELECT sys.ML_EXPLAIN_ROW(JSON_OBJECT("sepal length", 7.3, "sepal width", 2.9, "petal length", 6.3, "petal width", 1.8), @iris_model,
JSON_OBJECT('prediction_explainer', 'permutation_importance'));

mysql> SELECT sys.ML_EXPLAIN_ROW(JSON_OBJECT('sepal length',`iris_test`.`sepal length`, 'sepal width',`iris_test`.`sepal width`,'petal
length',`iris_test`.`petal length`, 'petal width',`iris_test`.`petal width`), @iris_model, JSON_OBJECT('prediction_explainer', 'shap')) FROM
`iris_test` LIMIT 4;

Model Explain API

23 Copyright © 2023, Oracle and/or its affiliates

Stored procedure to generate explanations for an entire table, saving the explanation results in another table

mysql> CALL sys.ML_EXPLAIN_TABLE('table_name', model_handle, 'output_table_name'), [options]);

'table_name': fully qualified name of the table containing the input dataset.

model_handle: explicit model handle string or session variable containing the model handle.

'output_table_name': fully qualified name of the table where to store explanation results. An error is thrown if the table already exists.

[options]: a set of optional key-value pairs, supports prediction_explainer and batch_size.

Examples:
mysql> CALL sys.ML_EXPLAIN_TABLE('ml_data.iris_test', @iris_model, 'ml_data.iris_predictions');

Model Explain API

24 Copyright © 2023, Oracle and/or its affiliates

Q&A

Thank you!

