
Principal Member of Technical Staff
Kaan Kara, PhD

High Performance OLAP on Unstructured Data At Scale

MySQL HeatWave Lakehouse: Scaling
Queries to Thousands of Cores

Unprecedented increase in volume of data

OLTP

SQL Analytics /
OLAP

Machine Learning

External Tables

Data Lake

Unstructured Data

> 80%
of the data

Open source MySQL

17
5Z
B

 –
 G

lo
ba

l d
at

as
ph

er
e

by
 2

02
5—

ID
C

HeatWave
Warehouse

MySQL

HeatWave
AutoML

HeatWave
Lakehouse

HeatWave
VectorDB

GBs

TBs

PB

upcoming

OLTP, real-time analytics, and ML in one cloud database service – without ETL
MySQL HeatWave

HeatWave Node 0

c0 c1

c2 c3

c30 c31

512GB

HeatWave Node 1

c0 c1

c2 c3

c30 c31

512GB

HeatWave Node 511

c0 c1

c2 c3

c30 c31

512GB

HeatWave Cluster

262TB memory
• Fast & scalable data ingestion from object store
• Statistics collection at ingestion for query performance
• Scaling query processing to thousands of cores

• Introduction of external table concept
• HeatWave as the primary engine for data lake
• Automatic schema inference for external tables

Lakehouse End-to-End Workflow

1. Create table with primary engine Lakehouse
• Auto provisioning based on data size and properties
• Auto schema inference based on data properties

2. Load the table
• HeatPump reads files from object store
• It transforms them to HeatWave format, loads to memory

3. Run queries
• Queries on tables both from InnoDB and Lakehouse

CREATE TABLE documents <create_definition> ENGINE=LAKEHOUSE
ENGINE_ATTRIBUTE='{
"location":...,
"file":[...],
"dialect":{"format":csv|avro|parquet,...}
}'
SECONDARY_ENGINE=RAPID;

ALTER TABLE documents SECONDARY_LOAD; -- Lakehouse Table
ALTER TABLE transactions SECONDARY_LOAD; -- InnoDB Table

SELECT * FROM documents, transactions ...

HeatPump: Achieving Scalable & High Performance Ingestion

How should we parallelize ingestion?

• File-wise distribution across nodes will likely suffer from data skew (file size
differences, different data properties etc.)

• We need a custom distribution scheme to ensure robust performance regardless of
what is ingested

Task 1 (file_name | size_B | offset_B | end_B)
src_data/0_1/customer/customer1.csv 74,246,996 0 20,000,000
src_data/0_1/customer/customer1.csv 74,246,996 20,000,000 40,000,000
src_data/0_1/customer/customer1.csv 74,246,996 40,000,000 60,000,000
src_data/0_1/customer/customer1.csv 74,246,996 60,000,000 74,246,996
src_data/0_1/customer/customer2.csv 53,252,63 0 20,000,000
src_data/0_1/customer/customer2.csv 53,252,631 20,000,000 40,000,000
src_data/0_1/customer/customer2.csv 53,252,631 40,000,000 53,252,631

Task 1 (file_name | size_B | offset_B | end_B)
src_data/0_1/customer/customer1.csv 74,246,996 0 20,000,000
src_data/0_1/customer/customer1.csv 74,246,996 20,000,000 40,000,000
src_data/0_1/customer/customer1.csv 74,246,996 40,000,000 60,000,000
src_data/0_1/customer/customer1.csv 74,246,996 60,000,000 74,246,996
src_data/0_1/customer/customer2.csv 53,252,63 0 20,000,000
src_data/0_1/customer/customer2.csv 53,252,631 20,000,000 40,000,000
src_data/0_1/customer/customer2.csv 53,252,631 40,000,000 53,252,631

Task 1 (file_name | size_B | offset_B | end_B)
src_data/0_1/customer/customer1.csv 74,246,996 0 20,000,000
src_data/0_1/customer/customer1.csv 74,246,996 20,000,000 40,000,000
src_data/0_1/customer/customer1.csv 74,246,996 40,000,000 60,000,000
src_data/0_1/customer/customer1.csv 74,246,996 60,000,000 74,246,996
src_data/0_1/customer/customer2.csv 53,252,63 0 20,000,000
src_data/0_1/customer/customer2.csv 53,252,631 20,000,000 40,000,000
src_data/0_1/customer/customer2.csv 53,252,631 40,000,000 53,252,631

• Create Tasks (~10MB data to process for each thread)
• Create Batches of Tasks (10s of Tasks to process for each node)
• Dynamically distribute the Batches to HeatWave nodes.

Load Parallelism: Distribute to Nodes Dynamically

HeatWave Cluster

HeatWave Node 0

c0 c1

c2 c3

c30 c31

512GB

HeatWave Node 1

c0 c1

c2 c3

c30 c31

512GB

HeatWave Node 511

c0 c1

c2 c3

c30 c31

512GB

HeatWave Node 2

c0 c1

c2 c3

c30 c31

512GB

HeatWave Plugin

Dynamic Distribution

B batches of K tasks each

K tasks

K >> cores in a single node
B >> nodes in the cluster

Steps in a HeatWave Node
HeatPump Ingestion

HeatWave Node 0

c0 c1

c2 c3

c30 c31

512GB

DEFAULT_PREFIX/t00000000001/

Task files 1…N

Data @ internal bucket

P1 P2

P3 P4

src_data/0_1/customer*

Data @ user bucket

HeatWave Plugin

1. Send a Batch of Tasks

2. Read Task Files

3. Read Data Files

5. Write HeatWave
partitions

4. Process data, create
partitions

Faster compared to competition
Object Store Ingestion Performance

0

5

10

15

20

25

30

35

40

45

HeatWave Lakehouse Snowflake Databricks Google BigQuery Amazon Redshift

Lo
ad

 T
im

e
 (h

ou
rs

)

Load Performance: 500 TB TPC-H

2X slower

4.4 hours

6X slower

8X slower 9X slower

Query Performance:
Scaling Relational Processing to

Thousands of Cores

Group-By Implementation Details
Adaptive Execution

Hash
Table

Input Partition
key | attr0 | attr1

Aggregate

Main question: How large should the hash
table be?
• Whenever we have a collision, we spill the

data to retry next time.

• In order to avoid spill, HT needs to be
sufficiently large.

• If the HT is too large
• Performance suffers due to bad cache

locality

• Memory consumption becomes
problematic

Ideally, the HT should be exactly as large as
the number of distinct keys, i.e. number of
groups.
Can we get this information at runtime?

Group-By
Result

Spill!

Cardinality Estimation At Runtime With HLL

Main intuition: In a set of uniformly hashed values, a sequence of k consecutive zeros in a given hash
will occur with a probability of 1/2^k
Example
• Set1: 0, 1, 0, 1, 0, 1 ... => max leading number of zeros is 1: Cardinality estimate 2^1 = 2
• Set2: 0, 1, 2, 3…, 128 => max leading number of zeros is 7: Cardinality estimate 2^7 = 128
• Allows a cardinality estimate with very small memory footprint
• However

• The estimate is only in powers of 2
• The variance of the estimate is very high

HyperLogLog
1. Hash each item to obtain a X-bit hash
2. Use b bits to determine a bucket
3. Use the rest (X-b) bits to get the max leading

number of zeros
4. Update the current max in the bucket
5. At the end, get a harmonic mean of each

bucket’s estimation

001011001010011001100000100100100010000010110

Which bucket? How many leading zeros?

Utilizing HyperLogLog
Cardinality Estimation At Runtime

Logical Plan Physical Plan

During Physical Plan Compilation
• Inject an HLL estimator at the

partitioning operator below
group-by.

• HLL will build the cardinality for
each partition and the hash table
will be sized accordingly.

• HLL estimation (mainly due to
hashing) has some overhead =>
cost based decision to inject (e.g.,
if we have stats cache).

Bloom Filter Sharing

1010111011 1010111011 1010111011 1010111011

BCAST Cost (time): 2 * BF_size * #nodes / network_bandwidth

 2 * 4GB * 512 / 1GB/s = 68 minutes

Bloom Filter Sharing (Binary Merge)

1010111011 1010111011 1010111011 1010111011

Cost (time): 2 * BF_size * log2(#nodes) / network_bandwidth

 2 * 4GB * 9 / 1GB/s = 72 seconds

At each round, send to neighbor 2^r % N
• Round 0 (r = 0): 1 % N -th neighbor
• Round 1 (r = 1): 2 % N -th neighbor
• Round 2 (r =2): 4 % N -th neighbor
• …

With Bloom Filter
Late Decompression

bloomfilter build
insert(PART.P_PARTKEY)

bloomfilter apply:
lookup (LINEITEM.L_PARTKEY)

This node projects 3 columns:
1. L_PARTKEY (4 Bytes)
2. L_EXTENDEDPRICE (8 Bytes)
3. L_QUANTITY (8 Bytes)

• Only L_PARTKEY needs to be decompressed
early for the bloomfilter evaluation.

• The other two columns can be late
decompressed.

• If the bloomfilter eliminates entire blocks of
data, decompression can be skipped for them!

Runtime savings: 3.1s (from 6.9s down to 3.8s)

Implementation Sketch
Late Decompression

Baseline Late Decomp

SELECT a1, a2, a3
FROM A
WHERE a1 < 10;

Barrier For Network Tasks

A System Partitioning Task

• Each node partitions its local relation using a
partitioning key and sends its local partition

• Straggler issue

• Slow nodes will not consume their local data
fast enough

• Slow nodes receive data earlier and network
buffers start filling up

• In Lakehouse Scale (up to 512 nodes), more likely to
face this issue and OOM.

Worst case: 2x memory (could not send
anything + received everything)

Barrier For Network Tasks

Barrier before any system partitioning task
• All nodes wait until we reach this task
• No performance penalty, since we had to

wait for the slowest node anyway

Memory Aware Task Scheduling

HeatWave has a compile-time task scheduling

• Optimized mode: Schedule all network-heavy
subtrees first (overlap network with compute as
much as possible)

• High memory consumption…

• Conservative mode

• Overlap until we reach a peak memory usage
threshold.

• The rest of the tasks prioritize data reduction.

MySQL HeatWave Lakehouse Performance

Same performance whether data
comes from InnoDB or Object Store

Summary

MySQL HeatWave Lakehouse: Scaling Queries to Thousands of Cores

• Lakehouse End-to-End Workflow
• High performance Data Ingestion

• Robust parallelism via intra-file processing

• Relational Processing at Lakehouse Scale
• Adaptive Execution Capabilities (Runtime Cardinality Estimation)
• Efficient Bloom Filter Sharing
• Late Decompression
• Network Barriers to avoid straggler OOM
• Memory-aware Task Scheduling

