
Principal Member of Technical Staf
Kaan Kara, PhD

Robust OLAP Query Performance At Scale

MySQL HeatWave: A Deep Dive Into
Optimizations

OLTP, real-time analytics, and ML in one cloud database service – without ETL
MySQL HeatWave

HeatWave Node 0

c0 c1

c2 c3

c30 c31

512GB

HeatWave Node 1

c0 c1

c2 c3

c30 c31

512GB

HeatWave Node 63

c0 c1

c2 c3

c30 c31

512GB

HeatWave Cluster

How do we scale-out query processing to hundreds of nodes and thousands of cores efficiently?
1. Main Principal in Execution: Data Partitioning
2. Query Optimization: A Holistic Approach

Significant Advantage in Perf and Price/Perf
MySQL HeatWave Query Performance

https://github.com/oracle/heatwave-tpch

0

200

400

600

800

1'000

1'200

1'400

1'600

1'800

HeatWave
Lakehouse

Amazon Redshift Databricks Snowflake Google BigQuery

A
vg

 e
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 (G
eo

m
ea

n)

Query execution time: 500 TB TPC-H

17X slo
wer

17X slow
er

36X slow
er

9X slo
wer

47s
7 mins

13 mins 14 mins

28 mins

0

5

10

15

20

25

30

35

HeatWave
Lakehouse

Redshift Databricks Snowflake Google BigQuery

Pr
ic

e-
pe

rf
or

m
an

ce

(b
as

ed
 o

n
G

eo
m

ea
n

qu
er

y
tim

e
an

d
an

nu
al

 c
os

t)

Price-performance: 500 TB TPC-H

8X hig
her

18X hig
her

22X hig
her

30X hig
her

OLAP Performance Fundamentals
In-Memory Hybrid Columnar Format

High fanout partitioning is the
core aspect of high performance.

Distributed Relational Join Processing

QUERY
SELECT L_LINENUMBER, L_DISCOUNT
FROM LINEITEM JOIN ORDERS ON L_ORDERKEY = O_ORDERKEY
WHERE O_ORDERDATE = ’2022-04-12’
ORDER BY L_LINENUMBER;

Node 1
LINEITEM ORDERS

1,…

5,...

4,…

2,...

Node 2
LINEITEM ORDERS

3,...2,...

Node 3
LINEITEM ORDERS

4,… 5,...

3,... 1,...

System Partitioning Over Network

LINEITEM ORDERS

1,… 2,...

1,...

LINEITEM ORDERS

3,...

2,...

LINEITEM ORDERS

4,…

5,...5,...

4,…

3,...

Local Partitioning. Why?
1. Multicore Parallelism
2. Cache Locality

How much do we need to partition?

ORDERS

1,...
1. Hash Table Build

Slot Value

1 6

2 3

3 5

4 7

… …

LINEITEM

1,…
2. Hash Table Probe

Thread-Local Hash Join

Heavy Random Access

• Cache misses are very costly in the hot loop.
• We want the hash table to fit L1 cache (64KB).

Back of the envelope
• Orders Table: key column is 8B integers, 768 Billion rows: 6.1TB
• 6.1TB / 64KB = ~96 Million Partitions
• Next power of two: 2^27, a partitioning fanout of 134 Million

Data Partitioning Problem: Where is the bottleneck?

foreach tuple t in relation R:
 p = hash(t.key)
 partitions[p][counts[p]++] = t

• p is random and will cause heavy random access.
• In case the range of p is high (high fanout), chances of TLB misses are high.

TLB (Translation Lookaside Buffer)
• A specialized cache for virtual-to-physical address translation.
• If a virtual address is not found, expensive page walk occurs.

• Can be even more expensive than simple cache miss, because page
walk might perform multiple memory accesses.

• Typical TLB has around 64 entries.
• Any partitioning fanout larger than 64 is likely to use more than

64 pages, causing a huge performance impact.

[1] O. Polychroniou and K. A. Ross. A comprehensive study of main-memory partitioning and its application to large-scale comparison- and radix-sort. In ACM SIGMOD, 2014

Reducing the TLB bottleneck with SW-managed buffers [2]

foreach tuple t in relation R:
 p = hash(t.key)
 buffers [p][counts [p]++ % N] = t
 if (counts[p] % N == 0)
 copy buffers[p] to partitions[p]

[2] C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu. Multi-core, main-memory joins: Sort vs. hash revisited. PVLDB, 7(1):85–96, 2013

• Maintain smaller (i.e. cacheline size) buffers
per partition.

• Most of the writes happen to a small
number of pages; avoiding TLB misses.

Back of the envelope
• 4KB page / 64B cacheline = 1024 partitions per page
• Assume 32 threads do 2048 fanout partitioning =>

this will consume 64 TLB entries.

• SW-managed buffers are a good
optimization for the TLB bottleneck, yet
higher partitioning fanout can still
cause a problem.

Multi Round Partitioning

An excerpt from TPC-H q21 physical plan

MySQL HeatWave:
Query Optimization

Query Optimization: Holistic Optimization

Hypergraph Optimizer gets information from
HeatWave Optimizer per subgraph:
• Cardinality stats from previous runs.
• Cost model from HeatWave physical optimizer.

SELECT
s_name,
count(*) as numwait
FROM
supplier,
lineitem l1,
orders,
nation
WHERE
s_suppkey = l1.l_suppkey
and o_orderkey = l1.l_orderkey
and o_orderstatus = 'F'
and l1.l_receiptdate > l1.l_commitdate
and exists (
SELECT
*
FROM
lineitem l2
WHERE
l2.l_orderkey = l1.l_orderkey
and l2.l_suppkey <> l1.l_suppkey
)
and not exists (
SELECT
*
FROM
lineitem l3
WHERE
l3.l_orderkey = l1.l_orderkey
and l3.l_suppkey <> l1.l_suppkey
and l3.l_receiptdate > l3.l_commitdate
)
and s_nationkey = n_nationkey
and n_name = 'SAUDI ARABIA'
GROUP BY
s_name
ORDER BY
numwait desc,
s_name
limit
100;

TPC-H Query 21

Query Optimization: A Detailed Overview

SELECT
s_name,
count(*) as numwait
FROM
supplier,
lineitem l1,
orders,
nation
WHERE
s_suppkey = l1.l_suppkey
and o_orderkey = l1.l_orderkey
and o_orderstatus = 'F'
and l1.l_receiptdate > l1.l_commitdate
and exists (
SELECT
*
FROM
lineitem l2
WHERE
l2.l_orderkey = l1.l_orderkey
and l2.l_suppkey <> l1.l_suppkey
)
and not exists (
SELECT
*
FROM
lineitem l3
WHERE
l3.l_orderkey = l1.l_orderkey
and l3.l_suppkey <> l1.l_suppkey
and l3.l_receiptdate > l3.l_commitdate
)
and s_nationkey = n_nationkey
and n_name = 'SAUDI ARABIA'
GROUP BY
s_name
ORDER BY
numwait desc,
s_name
limit
100;

TPC-H Query 21
Logical Plan

Physical Plan

Logical plan decisions:
• Nodes are matched to

previous runs to obtain
accurate cardinality results
(filter selectivity, join
cardinality)

• Logical transformations
(subquery pushdown)

• …

Physical plan decisions:
• Join pattern (broadcast vs.

partitioned)
• Partitioning fanout / rounds
• Bloom filter attachment
• Data placement key
• …

Logical Optimization: Pushdown Transformation

SELECT
SUM(L1.L_EXTENDEDPRICE) / 7.0 AS AVG_YEARLY
FROM
LINEITEM, PART,
(SELECT
L_PARTKEY AS TEMP_KEY,
0.2 * AVG(L_QUANTITY) AS TEMP_AVG
FROM
LINEITEM
GROUP BY L_PARTKEY) AS T1
WHERE
P_PARTKEY = L_PARTKEY
AND P_BRAND = 'Brand#23'
AND P_CONTAINER = 'MED BOX'
AND P_PARTKEY = T1.TEMP_KEY
AND L_QUANTITY < T1.TEMP_AVG;

Join Pushdown

• Logical equivalence: We can perform the join
between T1.L_PARTKEY with P_PARTKEY
before or after the group-by. Which one is
cheaper though?

• Intuition: Selective join, especially with
filtered build-side, is usually cheap.

• Without pushdown, group-by has to process
180 Billion rows from LINEITEM.

• After the pushdown, group-by processes 180
Million rows (1000x reduction).

Physical Optimization: Bloom Filter

000

Insert: hash(k1) 000000000000000000000000000000100000000000000000000000000000000

Lookup: hash(k2) 001000000010000000010000000000100000000000001000000000100000000

• False positives are possible (due to collisions at insert)
• False positive rate estimate: E=(1-exp(-kN/m))^k (m: #bits, N: #inserts, k: #hashes)

• For a low false positive rate:
• More bits
• Less inserts

Bloom Filter Application: TPC-H q08

Realistic reduction:
#rows: 3e9 to 20e6
mem: 48GB to 0.3GB

0.6M inserts
FPR: 0%

Est. Runtime 2.1s -> 0.2s

Est. Runtime 1.1s -> 0.1s

JOIN #rows: 20e6

Observations
• False-Positive-Rate: More inserts require larger

BF. Trade-off between low FPR and cache-locality.

• Expected filtering does not only depend on FPR,
but also join output cardinality. Advantage only for
high selective joins.

• Runtime improvement: Depends on the filtering
rate, however BF lookup itself turns out to be
costly. Apply a BF only for good filtering rate.

• Join pattern: System broadcast on the build side.
No need to share local BFs across the cluster.

Bloom Filter Application: TPC-H q21

Realistic reduction:
#rows: 3.9e9 to 270e6
mem: 43GB to 3GB

72M inserts
FPR: 0%

Est. Runtime 13s -> 1s

Observations
• Runtime improvement is great for this query,

since we can push down the BF filtering through
many operators.

• Join pattern: System partitioning on the build
side. Costly, since we need to share local BFs
across the network. Cost-based decision for
these type of queries.

Standard vs. Blocked
Bloom Filter Implementation

Standard Blocked

Block
Sector

Blocksize B

Sectorsize S

Choose to accommodate AVX2:
B: 256 bits, S: 32 bits => 8 hashes (close to the optimal 7)
A single lookup can happen in few 256-bit AVX instructions.

• Set 1 bit in each sector in a block, for each insert. (B/S bits per insert)
• Each insert/lookup requires accessing a single block.

• - k random accesses per single lookup.
• - Hard to parallelize with AVX (row

dimension rather than hash dimension).
• + Better false-positive-rate.

• + Single access per lookup.
• + Suitable for AVX.
• - Worse false-positive-rate.

• Set k bits in the entire bloom filter buffer.
• Each insert/lookup requires accessing k cachelines.

Standard vs. Blocked
Bloom Filter Implementation

3x

TPC-H 512GB (Baseline, Vanilla-BF, Optimized-BF)
Vanilla-BF vs Optimized-BF

Geomean
Baseline: 3.22
Vanilla-BF: 3.20 (1%)
Optimized-BF: 2.31 (28%)

Max memory
Baseline: 255GB
Vanilla-BF: 251GB (4GB lower)
Optimized-BF: 244 (11GB lower)

Summary

MySQL HeatWave: A Deep Dive into Optimizations

• Data partitioning is a first principle
• CPU optimizations

• A Holistic Optimization Approach
• Inform MySQL Hypergraph optimizer with HeatWave query properties (logical and physical).

• Logical optimizations save lots of work
• Pushdown transformations
• Cardinality results from stats cache
• …

• Physical optimizations needed to achieve good scalability
• Bloom filter applications
• Join patterns (partitioned vs. broadcast)
• Group-by patterns (high-NDV, medium-NDB, low-NDV, approx. low-NDV)
• Data placement
• Late decompression
• …

