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MySQL at Booking.com



The Scale of MySQL at Booking.com
● MySQL is the main relational datastore at Booking.com.

● Thousands of MySQL servers grouped in over 200 MySQL clusters, a.k.a. 
replication chains across multiple fully isolated network environments.

● Each replication chain consists of a primary for RW queries and reads are 
scaled out to 10s or 100s of RO replicas.

● Multi-tier replication chains to avoid overloading the primary.

● A typical replication chain spans 3 different regions within Europe.

● Some RDS clusters are being used for production workloads.

● Complete testing environment with periodic copies of data/schema from 
production.
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The Evolution of Bare-Metal
● Over the years, we have been fully running our MySQL servers on Bare-Metal 

servers.

● Over 90% of the fleet run on local ephemeral storage. The rest of the servers are 

systems with relatively large datasets, >7TB, and they use high performance NAS.

● NAS vendors changed over the years. However, currently, we are running on PURE 

storage and plan to use HPE Aletra in the near future.

● Local storage Evolved from HDDs to SSDs over the years. Only a few systems run 

on HDDs at the moment and these are mostly small datasets that fit in the InnoDB 

buffer pool.

● Chains have enough redundancy to tolerate server failures and up to a region 

failure for enough time to provision new servers.

● Copying data to new servers is mainly done using MySQL Native Cloning.



The Evolution of Bare-Metal
● Focusing on Majority of our fleet running on local SSDs.

○ Servers come in 3 main flavours that mainly vary in terms of disk space size.

○ The same memory and CPU capacity on all flavours.

○ Smallest disks are 1.7TB and largest are 8TB.

○ A few systems require different flavours with high CPU or Memory.



Problems with Bare-Metal
● Moving to SOA means 1000s of smaller schemas each is accessed by a few 

services this translates to either 1000s of underutilized servers or 
multi-tenant chains.

○ The Noisy Neighbor headache.

○ Capacity planning becomes more challenging.

○ Cost attribution becomes harder and harder.

● Horizontal scaling is always at the risk of delayed hardware deliveries and 
installation.

● Servers are becoming more powerful than we actually need.

● Vertical scaling is not suitable for a lot of systems to be able to guarantee 
redundancy, reliability and fault tolerance.

● Limited data centers capacity

● Data Centers expansion are slow, complicated and expensive.



Resource Utilization
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The Rise of Virtualization
● Virtualization gives a lot of flexibility when it comes to server sizing.

○ We get to define what flavours we need.

○ Higher resource utilization.

● Vertical and horizontal scaling becomes easier.

● Shorter server provisioning time due to the usage of pre-baked images.

● Better control over servers quotas and cost attribution.



Virtualization Challenges
● Automation changes:

○ Changing the assumption that everything runs on the same platform.

○ Supporting new backends and server inventories.

○ Supporting transient migration states.

○ Making the automation extendable to support more platforms in the future.

○ Creating an automated, transparent and reliable migration plan.

● Compliance

○ Compliance of the platform.

○ Server patching.

● Which Storage to use?!



Storage Testing

● There are 3 main storage solutions available on 
OpenStack.

○ CEPH: the default OpenStack storage.
○ NAS: high performance network attached storage.
○ Local storage: NVME drives on OpenStack hypervisors.



FIO

https://fio.readthedocs.io/en/latest/fio_doc.html


SYSBENCH

https://dev.mysql.com/downloads/benchmarks.html#:~:text=Sysbench%20is%20a%20popular%20open,a%20single%20MySQL%20Server%20instance.


Other Tests

● Replication load testing
○ How much time it takes a server to catch up with 

replication.
● Load Capacity testing

○ Push servers to saturation on one of the 
resources to measure its capacity.



Pain Points
● New platform comes with new challenges/problems.

● Stability of OpenStack and CEPH.

● Increased failure domain; rack vs cloud.

● Lift & Shift Vs Optimization.

● Increased risk of noisy neighbor.

● Automation refactoring.



Extension to AWS EC2 - Why?

○ Booking’s Cloud strategy to adopt Public Cloud (AWS)

○ Our current automation assumes, it has full access to a “compute platform”

○ Current responsibility model of MySQL’s teams (platform organisation)

○ Logical next step to have presence in Public Cloud

○ Booking’s architectures and shared databases (ownership / responsibility)

○ Expertise

○ …

What about managed services like RDS MySQL?



○ Learn about the new Platform and all the offering

○ Integrate with the new Platform (inventory, metadata,etc)

○ Adapt the tooling to handle the new Platform as transparent as possible

■ Integrate new concepts… (DC, AZ, Region)

○ Images (AMI) management

○ Configuration management changes

○ Adapt processes to the new Platform (e.g. Patching)

○ Ensure new Platform remains compliant

Extension to AWS EC2 - Challenges



○ Chain (cluster) management

○ Provisioning / Deprovisioning

○ Server “flavours” management

○ MySQL Version management

○ Topology management

○ Service Discovery

○ Switchover / Failover 

○ Monitoring, self-healing and alerting

○ Capacity testing 

○ Backup and Restore testing

○ Connection management

○ Root password rotation

○ Schema changes

○ ETC…

Initial commit -> “Date:   Thu Sep 6 11:59:32 2012 +0200”

Our complex fleet management tool



Plugable Provisioner Architecture



AWS Components - Overview

All these components (Account, Region, VPC, AZ, Subnet, Security 

Group) are new to the automation



“Try find the minimum number of vCPU and RAM needed to run our workload”

- Listed all the available types

- Selected “similar” (CPU, RAM) to bare-metal “flavours” (m5.8xlarge) -> OK

- Tried  memory optimised types, CPU utilisation is quite low (r6i.4xlarge) -> OK

- Tried local-storage: r6id.4xlarge (~1TB), i4i.4xlarge (~3.7TB) -> OK

- Can we go smaller?

- Tried i4i.large -> FAILED (it has only 2vCPU and couldn’t hold replication!)

- We tried i4i.xlarge -> OK

- We tried older generation instances too  i3en.2xlarge-> OK

“In the long run local-storage seems cheaper using Reserved instances”

AWS - EC2 instance types

AWS - EC2 reserved instances 

Instance types (aka “flavours”)

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/reserved-instances/


Instance types (aka “flavours”) - EBS
○ EBS (Elastic Block Storage) only used for BIG chains (> 7.5TB)

○ We don’t really need high IOPS

■ It is cheaper to use GP3 (up to 16TB) rather than IO2 (+IOPS and >size)

○ > 16TB?

■ Multiple GP3 (16TB). E.g. 26TB required, 2 x 16TB

AWS - EBS 

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html


Instance types (“flavours”) - Heuristic

We consider a “safety factor” when calculating the size



❯ dba chain onboard_to_ec2_pick_flavor chainX

INFO Gathered disk_used_gb=2227 from Prometheus.

With safety_factor=2.1 this gives us the desired volume_size_gb=4676

INFO The 'set' flag is not used.

It would update flavor to i3en.2xlarge from i4i.4xlarge for chain chainX

-= RETURN =-

i3en.2xlarge

❯

Instance type - Heuristic Automation

{

    "prod": {

        "default_provisioner": "serverdb",

        "flavors": {                           THIS IS HOW CONFIG LOOKS LIKE
            "ec2": "i3en_2xlarge",

            "serverdb": "Blade8_1"

        }

    }

}



Fleet extended to EC2!



Disk IO utilization / replication lag



CPU utilization



import boto3

client = boto3.client('ec2')

inst_id, ami_id = ('i-07c6c0048aa0f7db5', 'ami-0fe3a22e643696344')

resp = client.create_replace_root_volume_task(InstanceId=inst_id, ImageId=ami_id)

Extending processes - Patching
○ Uses an AWS API call ReplaceRrootVolume 

○ Replaces the AMI of a running instance and keep the data volume

○ Takes ~90 seconds

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/replace-root.html


Pain Points / Future
● New Platform new concepts, new issues, new challenges

● Discover “wrong” and “unknown”  thighs in current environment

● Automation refactoring

● Cost AWS billing can skyrocket easily

● Hard to keep updated about new instances types and their performance

● Plan to use “Reserved instances” and then evaluate “Spot instances”

● Define new workload profiles with different reliability targets

● Evaluate “create use destroy” option (if feasible)



Questions?
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