
Running MySQL on Three Different
Platforms at Booking.com
Mohammed Gaafar
Senior Site Reliability Engineer

Martin Alderete
Principal Site Reliability Engineer

Agenda

1. About us

2. MySQL Architecture at Booking.com

3. The evolution of Bare-Metal

4. Problems with Bare-Metal

5. The Rise of Virtualization

6. Storage Testing

7. Extending to yet another platform (AWS EC2)

Agenda

Agenda Mohammed Gaafar
1. Senior Site Reliability Engineer

2. 15 years of experience in Linux System
Administration, MySQL Administration and Site
Reliability Engineering.

3. Computer Science and Bioinformatics Background

4. At Booking.com since Feb 2018

5. Application Data Services Department -
DB-Engineering Team

Agenda Martin Alderete
1. Principal Site Reliability Engineer

2. Born in Patagonia Argentina :)

3. Background in System engineering and distributed
systems. Worked in multiple industries / academia

4. At Booking.com since Jan 2023

5. Application Data Services Department

MySQL at Booking.com

The Scale of MySQL at Booking.com
● MySQL is the main relational datastore at Booking.com.

● Thousands of MySQL servers grouped in over 200 MySQL clusters, a.k.a.
replication chains across multiple fully isolated network environments.

● Each replication chain consists of a primary for RW queries and reads are
scaled out to 10s or 100s of RO replicas.

● Multi-tier replication chains to avoid overloading the primary.

● A typical replication chain spans 3 different regions within Europe.

● Some RDS clusters are being used for production workloads.

● Complete testing environment with periodic copies of data/schema from
production.

Replication Chains

Region 3

Region 1

Region 2

Application Primary

Intermediate

r/o replica
r/o replica

r/o replica

Intermediate

r/o replica
r/o replica

r/o replica

Intermediate

r/o replica
r/o replica

r/o replica
Application

Application
RW

RW

RW

RO

RO

RO

The Evolution of Bare-Metal
● Over the years, we have been fully running our MySQL servers on Bare-Metal

servers.

● Over 90% of the fleet run on local ephemeral storage. The rest of the servers are

systems with relatively large datasets, >7TB, and they use high performance NAS.

● NAS vendors changed over the years. However, currently, we are running on PURE

storage and plan to use HPE Aletra in the near future.

● Local storage Evolved from HDDs to SSDs over the years. Only a few systems run

on HDDs at the moment and these are mostly small datasets that fit in the InnoDB

buffer pool.

● Chains have enough redundancy to tolerate server failures and up to a region

failure for enough time to provision new servers.

● Copying data to new servers is mainly done using MySQL Native Cloning.

The Evolution of Bare-Metal
● Focusing on Majority of our fleet running on local SSDs.

○ Servers come in 3 main flavours that mainly vary in terms of disk space size.

○ The same memory and CPU capacity on all flavours.

○ Smallest disks are 1.7TB and largest are 8TB.

○ A few systems require different flavours with high CPU or Memory.

Problems with Bare-Metal
● Moving to SOA means 1000s of smaller schemas each is accessed by a few

services this translates to either 1000s of underutilized servers or
multi-tenant chains.

○ The Noisy Neighbor headache.

○ Capacity planning becomes more challenging.

○ Cost attribution becomes harder and harder.

● Horizontal scaling is always at the risk of delayed hardware deliveries and
installation.

● Servers are becoming more powerful than we actually need.

● Vertical scaling is not suitable for a lot of systems to be able to guarantee
redundancy, reliability and fault tolerance.

● Limited data centers capacity

● Data Centers expansion are slow, complicated and expensive.

Resource Utilization

Resource Utilization

Resource Utilization

The Rise of Virtualization
● Virtualization gives a lot of flexibility when it comes to server sizing.

○ We get to define what flavours we need.

○ Higher resource utilization.

● Vertical and horizontal scaling becomes easier.

● Shorter server provisioning time due to the usage of pre-baked images.

● Better control over servers quotas and cost attribution.

Virtualization Challenges
● Automation changes:

○ Changing the assumption that everything runs on the same platform.

○ Supporting new backends and server inventories.

○ Supporting transient migration states.

○ Making the automation extendable to support more platforms in the future.

○ Creating an automated, transparent and reliable migration plan.

● Compliance

○ Compliance of the platform.

○ Server patching.

● Which Storage to use?!

Storage Testing

● There are 3 main storage solutions available on
OpenStack.

○ CEPH: the default OpenStack storage.
○ NAS: high performance network attached storage.
○ Local storage: NVME drives on OpenStack hypervisors.

FIO

https://fio.readthedocs.io/en/latest/fio_doc.html

SYSBENCH

https://dev.mysql.com/downloads/benchmarks.html#:~:text=Sysbench%20is%20a%20popular%20open,a%20single%20MySQL%20Server%20instance.

Other Tests

● Replication load testing
○ How much time it takes a server to catch up with

replication.
● Load Capacity testing

○ Push servers to saturation on one of the
resources to measure its capacity.

Pain Points
● New platform comes with new challenges/problems.

● Stability of OpenStack and CEPH.

● Increased failure domain; rack vs cloud.

● Lift & Shift Vs Optimization.

● Increased risk of noisy neighbor.

● Automation refactoring.

Extension to AWS EC2 - Why?

○ Booking’s Cloud strategy to adopt Public Cloud (AWS)

○ Our current automation assumes, it has full access to a “compute platform”

○ Current responsibility model of MySQL’s teams (platform organisation)

○ Logical next step to have presence in Public Cloud

○ Booking’s architectures and shared databases (ownership / responsibility)

○ Expertise

○ …

What about managed services like RDS MySQL?

○ Learn about the new Platform and all the offering

○ Integrate with the new Platform (inventory, metadata,etc)

○ Adapt the tooling to handle the new Platform as transparent as possible

■ Integrate new concepts… (DC, AZ, Region)

○ Images (AMI) management

○ Configuration management changes

○ Adapt processes to the new Platform (e.g. Patching)

○ Ensure new Platform remains compliant

Extension to AWS EC2 - Challenges

○ Chain (cluster) management

○ Provisioning / Deprovisioning

○ Server “flavours” management

○ MySQL Version management

○ Topology management

○ Service Discovery

○ Switchover / Failover

○ Monitoring, self-healing and alerting

○ Capacity testing

○ Backup and Restore testing

○ Connection management

○ Root password rotation

○ Schema changes

○ ETC…

Initial commit -> “Date: Thu Sep 6 11:59:32 2012 +0200”

Our complex fleet management tool

Plugable Provisioner Architecture

AWS Components - Overview

All these components (Account, Region, VPC, AZ, Subnet, Security

Group) are new to the automation

“Try find the minimum number of vCPU and RAM needed to run our workload”

- Listed all the available types

- Selected “similar” (CPU, RAM) to bare-metal “flavours” (m5.8xlarge) -> OK

- Tried memory optimised types, CPU utilisation is quite low (r6i.4xlarge) -> OK

- Tried local-storage: r6id.4xlarge (~1TB), i4i.4xlarge (~3.7TB) -> OK

- Can we go smaller?

- Tried i4i.large -> FAILED (it has only 2vCPU and couldn’t hold replication!)

- We tried i4i.xlarge -> OK

- We tried older generation instances too i3en.2xlarge-> OK

“In the long run local-storage seems cheaper using Reserved instances”

AWS - EC2 instance types

AWS - EC2 reserved instances

Instance types (aka “flavours”)

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/reserved-instances/

Instance types (aka “flavours”) - EBS
○ EBS (Elastic Block Storage) only used for BIG chains (> 7.5TB)

○ We don’t really need high IOPS

■ It is cheaper to use GP3 (up to 16TB) rather than IO2 (+IOPS and >size)

○ > 16TB?

■ Multiple GP3 (16TB). E.g. 26TB required, 2 x 16TB

AWS - EBS

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html

Instance types (“flavours”) - Heuristic

We consider a “safety factor” when calculating the size

❯ dba chain onboard_to_ec2_pick_flavor chainX

INFO Gathered disk_used_gb=2227 from Prometheus.

With safety_factor=2.1 this gives us the desired volume_size_gb=4676

INFO The 'set' flag is not used.

It would update flavor to i3en.2xlarge from i4i.4xlarge for chain chainX

-= RETURN =-

i3en.2xlarge

❯

Instance type - Heuristic Automation

{

 "prod": {

 "default_provisioner": "serverdb",

 "flavors": { THIS IS HOW CONFIG LOOKS LIKE
 "ec2": "i3en_2xlarge",

 "serverdb": "Blade8_1"

 }

 }

}

Fleet extended to EC2!

Disk IO utilization / replication lag

CPU utilization

import boto3

client = boto3.client('ec2')

inst_id, ami_id = ('i-07c6c0048aa0f7db5', 'ami-0fe3a22e643696344')

resp = client.create_replace_root_volume_task(InstanceId=inst_id, ImageId=ami_id)

Extending processes - Patching
○ Uses an AWS API call ReplaceRrootVolume

○ Replaces the AMI of a running instance and keep the data volume

○ Takes ~90 seconds

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/replace-root.html

Pain Points / Future
● New Platform new concepts, new issues, new challenges

● Discover “wrong” and “unknown” thighs in current environment

● Automation refactoring

● Cost AWS billing can skyrocket easily

● Hard to keep updated about new instances types and their performance

● Plan to use “Reserved instances” and then evaluate “Spot instances”

● Define new workload profiles with different reliability targets

● Evaluate “create use destroy” option (if feasible)

Questions?

Thanks
mohammed.gaafar@booking.com

Empowering people to experience the world

Booking.com

martin.alderete@booking.com

mailto:mohammed.gaafar@booking.com
mailto:mohammed.gaafar@booking.com

