
TiDB’s Distributed SQL Architecture:
For Scale and Reliability

Introduction

Sunny Bains
Architect, PingCAP
● Working on database

internals since 2001.
● Was MySQL/InnoDB team lead

at Oracle.

TiDB’s unique value

- Easy to setup and start
- MySQL 8.0 compatible
- Scalable by Design
- Disaggregated Compute and Storage
- Multi-tenant ready
- Versatile
- Reliable
- Open source

Agenda

Design Fundamentals
TiDB Architecture

Online DDL
Enhancing Database
Agility with Lightning-Fast
Schema Changes

Resource Control
Empowering Consolidated
Workloads with Precision
Resource Allocation. DXF.

01 03

02 04 Tools

TiDB’s wide range of
tools for managing your
databases

Reference Architecture

• OLTP and optional OLAP
• Raft for consensus
• Data consistency
• Configurable region size
• Fault tolerance, across AZ

TiDB Region
A Region is TiKV’s logical scale unit

● Operations such as load balance, scale-out, scale-in are all based on region

● Regions are replicated using the Raft consensus protocol

○ A replicated region is called a Raft group

○ Regions are spread across the nodes in the cluster

○ A single node contains many Regions

○ Regions are stored on RocksDB, there is one instance of RocksDB per Node.

○ Rows in a Region are ordered

Placement Driver [PD]
PD is the meta-data server for the cluster and coordinates the entire cluster

PD is stateless, stores the global state in etcd
PD’s stateless design allows it to achieve HA using etcd

PD Overview
Generates the start and commit Timestamp (TS) of distributed transactions

Handles region distribution and node failures
● Dynamic balancing and rebalancing, spread the love evenly
● Workload balancing, identify and avoid hotspots dynamically

Handles cluster configurations
● Facilitates migration of region replicas to added nodes
● Automatically manages online/offline state transitions of nodes

Multi-Zone deployment and disaster recovery

PD Cluster Monitoring
PD collects information at two levels of granularity

● Node level
○ Total and free disk capacity
○ The number of Regions
○ Data writing speed
○ The volume of sent/received Snapshots (used for data replication)
○ Node overload status, CPU monitoring
○ Label information (a set of hierarchical Tags)

● Region level heartbeat messages (Raft consensus protocol related messages)
○ The location of the Leader and Followers
○ The number of disconnected Followers
○ Data reading and writing qps

PD Scheduling strategies
PD policies are settable by the administrators

● Replication factor constraint
● Replica placement constraint

○ Policy to force spread of replicas over node/rack/dc/zone
■ e.g., ensure that the replicas are spread geographically
■ A disconnected node rejoins the cluster leading to excessive replicas
■ Ensure raft (region) leaders are spread evenly across the nodes

● Balanced space utilization across the cluster
○ Using the free and used storage on all the nodes

● Hotspot detection and mitigation
○ Using the CPU and read/write throughput metrics sent by the nodes in

the cluster
● Governor for scheduling

○ Controls scheduling rate by monitoring ongoing operations, by default it
tends to conservative. The speed can be adjusted via the
administration interface.

PD Placement Policies
PD placement policies are settable using SQL

Create and set a placement policy
CREATE PLACEMENT POLICY myplacementpolicy
 PRIMARY_REGION = "us-east-1" REGIONS = "us-east-1, us-west-1";

CREATE TABLE t1 (a INT) PLACEMENT POLICY = myplacementpolicy;

CREATE TABLE t2 (a INT);

ALTER TABLE t2 PLACEMENT POLICY = myplacementpolicy;

Modify a placement policy
ALTER PLACEMENT POLICY myplacementpolicy FOLLOWERS = 4;
– Create 5 replicas [one leader and 4 followers]

Drop a placement policy
DROP PLACEMENT POLICY myplacementpolicy;

https://docs.pingcap.com/tidb/stable/placement-rules-in-sql#specify-a-default-placement-policy-for-a-database

TiKV - Distributed storage engine
CNCF Graduated Project. Written in Rust.

TiKV provides the following services
● Store and retrieve the data
● Replication and fault tolerance
● Data distribution across the storage cluster
● Distributed transaction processing

You can visualize it as a large distributed and ordered hash
map that is designed for high performance and reliability.

TiKV - Data Storage Example
Example to illustrate how TiKV partitions and manages the data

TiKV - Coprocessor
The TiKV Coprocessor supports the following executors
The names are self explanatory, they can be chained together

● Table scanner
● Index scanner
● Selector (Table scanner | Index scanner)

○ Performs a filter, mostly for where.
● Aggregator (Table scanner | Index Scanner | Selector)

○ Performs an aggregation (e.g. count(*), sum(E))
● Top N elements (Table scanner | Index scanner | Selector)

○ Sorts the data and returns the top N matches, for example, order by C limit 10

TiKV - Raft Consensus Protocol
The core idea of Raft is to elect a leader and all writes then go through the leader.

The data is not considered durable until a majority of the nodes in the cluster acknowledge the write.

TiKV - Handling Failures
Hardware and network failures are a fact of life

Distributed Transactions in TiDB
● TiDB supports Read-Committed and Snapshot Isolation levels

○ The Snapshot Isolation is mapped to MySQL/InnoDB’s Repeatable Read
● TiDB uses an optimized version of the Percolator algorithm for distributed transactions
● A transaction requires a start time stamp and a commit timestamp

○ PD is responsible for handing out these timestamps
○ These timestamps are used in TiDB’s MVCC implementation

● Async commit in TiDB
○ The SQL nodes are the Txn Coordinators (TC)
○ The TiKV nodes are the participants
○ Works well when the transaction write set is small and Phase II time dominates

● Supports 1PC Commit Optimization
○ If transaction only updates a non-index column of a record
○ Or, Inserts a record without a secondary index,
○ Only involves a single Region

https://www.pingcap.com/blog/async-commit-the-accelerator-for-transaction-commit-in-tidb-5-0/

Optimizer Components
Generial Overview of the optimizer components

Bringing it all together
A brief look at how the SQL parser and optimizer work in TiDB

A brief look at how the SQL parser and optimizer work when [optional] TiFlash is installed

TiDB Optimizer

TiDB

Range 1

Range 3

TiKV node 1

Range 4

Store 1

Range 1

Range 2

TiKV node 2

Range 3

Store 2

Range 3

Ran
ge

TiKV node 3

Store 3

Range 4

Range 4

Range 2 Range 1

Range 2

TiKV node 4

Store 4 Store 5 Store 6

TiFlash node 1 TiFlash node 2

TableScan sales (price,pid)

SELECT AVG(s.price)
FROM prod p, sales s
WHERE p.pid = s.pid AND p.batch_id = ‘B1328’;

IndexScan prod (pid, batch_id = ‘B1328’)

Agenda

Design Fundamentals
TiDB Architecture

Online DDL
Enhancing Database
Agility with Lightning-Fast
Schema Changes

Resource Control
Empowering Consolidated
Workloads with Precision
Resource Allocation. DXF.

01 03

02 04 Tools

TiDB’s wide range of
tools for managing your
databases

Flow Control
resource quota

Schedule Control
job priority

Resource
segregation

CPU / IO

Fine-grained
resource abstract

RU / RG
Usage tracking

Tune / Apportion

Why TiDB Resource Control

Cost increase

Hard to
maintain

Hard to cross
database join

Consolidate?

Interfere

QoS

Change ->
Disaster

TiDB Resource
Control

When there are multiple apps/databases

A typical microservice architecture: Database per service

What is Resource Control?
Manage multiple workloads in a TiDB cluster.
Isolate, manage and schedule access to resources sharing the
same TiDB cluster.

TiDB

eg. xx workloads use too many resources and this impacts
the P99 latency of small queries.

OLTP
workloads
(short queries,

small updates…)

OLAP workloads
(large batches,

ad-hoc queries…)

Maintenance jobs
(Backup, Auto tasks…) App1/User1 App2/User2 App3/User3

TiDB

eg. Limit the resources allocated to app xxx/ user xxx.
eg. Allocate more resources to higher priority apps/users
when the system is overloaded.

A resource group is a logical container for managing:
CPU
I/O

What is a Resource Group?

Option Description
RU_PER_SEC Rate of RU backfilling per second.

Must be specified when creating a resource group.

PRIORITY The absolute priority of tasks to be processed on TiKV.
The default value is MEDIUM.

BURSTABLE If the BURSTABLE attribute is set, use the available free system resources even if
its quota is exceeded.

There are 3 important options for each resource group:

Request Unit (RU) and Scheduling
A Request Unit (RU) is an abstract unit for measuring system resource usage.

TiDB uses mClock, which is a weight and constraint based scheduler.
“...constraint-based scheduler ensures that [tasks] receive at least their minimum reserved
service and no more than the upper limit in a time interval, while the weight-based scheduler
allocates the remaining throughput to achieve proportional sharing.”

Resource type RU consumption

Read 2 storage read batches, 8 storage read requests and 64 KiB read request payload - consume 1 RU each

Write 1 storage write batch, 1 storage write request and 1 KiB write request - consume 1 RU each

SQL CPU 3 ms consumes 1 RU

https://docs.pingcap.com/tidb/stable/tidb-resource-control#what-is-request-unit-ru

Evaluate system capacity

CALIBRATE RESOURCE;
+-------+
| QUOTA |
+-------+
| 190470 |
+-------+
1 row in set (0.01 sec)

CALIBRATE RESOURCE WORKLOAD
OLTP_WRITE_ONLY;
+-------+
| QUOTA |
+-------+
| 27444 |
+-------+
1 row in set (0.01 sec)

CALIBRATE RESOURCE START_TIME '2023-04-18
08:00:00' DURATION '20m';
+-------+
| QUOTA |
+-------+
| 27969 |
+-------+
1 row in set (0.01 sec)

CALIBRATE RESOURCE START_TIME '2023-04-18
08:00:00' END_TIME '2023-04-18 08:20:00';
+-------+
| QUOTA |
+-------+
| 27969 |
+-------+
1 row in set (0.01 sec)

● Estimate capacity based on hardware
deployment and standard workloads

● Estimate capacity based on actual
workloads

Manage resource groups

Create Resource Group
CREATE RESOURCE GROUP IF NOT EXISTS rg1 RU_PER_SEC = 1000 BURSTABLE;

Alter Resource Group
ALTER RESOURCE GROUP rg1 RU_PER_SEC=20000 PRIORITY = HIGH;

Drop Resource Group
DROP RESOURCE GROUP rg1;

Query Resource Group(s)
SHOW CREATE RESOURCE GROUP rg1;
SELECT * FROM information_schema.resource_groups WHERE NAME = 'rg1';

Bind resource groups
User Level Mapping

CREATE USER 'user1'@'%' RESOURCE GROUP rg1;
ALTER USER ‘user1’ RESOURCE GROUP rg2;
SELECT User, User_attributes FROM mysql.user WHERE User = 'user1';

Session Level Mapping
SET RESOURCE GROUP <group name>
SELECT current_resource_group();

Statement Level Mapping
Hint: /*+ resource_group(${GROUP_NAME}) */

SELECT /*+ resource_group(rg1) */ * FROM t1
INSERT /*+ resource_group(rg2) */ INTO t2 VALUES(2);

Statement (Hint) Level > Session Level > User Level

Resource Control Architecture

PD TiDB

Resource Meter

Token Bucket Client

Local Admission ControllerToken Bucket Server

Global Admission Controller

PD

Token Bucket Server

Global Admission Controller

PD

Token Bucket Server

Global Admission
Control

TiDB

Resource Meter

Token Bucket Client

Local Admission Control

TiKV

Scheduling
Control

TiKV

Scheduling Control
TiKV

Scheduling Control

Token bucket
requests

KV/DistSQL requests

 Group Resources

mClock based scheduling

Admission Control Layer
● Quota Limits by Request Unit
● GAC

○ Maintain global token buckets
● LAC

○ Measure resources used by TiKV and
TiDB (CPU + IO -> RU -> Tokens),
consume tokens allocating by GAC

Scheduling Control Layer
● Enhanced mClock based scheduling
● Weight input

○ RU quota defined in resource groups
○ Priority defined in resource groups

BURSTABLE

Distributed eXecution Framework (DXF)

● Unified scheduling and distributed execution of tasks
● Unified resource management capabilities
● Provides unified capabilities for high scalability, high availability, and high performance
● Typical use cases: DDL, IMPORT, TTL, Analyze, Backup/Restore

● Where a task processes large amount of data at both schema and table level
● Executed periodically, but at a low frequency

Apportion and control resources efficiently at the cluster level, to reduce impact on core business transactions

https://docs.pingcap.com/tidb/dev/tidb-distributed-execution-framework

Agenda

Design Fundamentals
TiDB Architecture

Online DDL
Enhancing Database
Agility with Lightning-Fast
Schema Changes

Resource Control
Empowering Consolidated
Workloads with Precision
Resource Allocation. DXF.

01 03

02 04 Tools

TiDB’s wide range of
tools for managing your
databases

MySQL solves DDL with MDL

MDL = Meta Data Lock

Table is locked for all sessions during the metadata (DD) update

ADD INDEX example, the metadata change still needs to block!
● MySQL uses a single instance/writer model
● Causes problems with MySQL replication
● Each MySQL replica will asynchronously run the DDL with an MDL
● Also if it’s not an instant DDL, it makes the replication lag worse

Is a distributed database different?

Client connections see and act on the same data

Issues to solve (ADD INDEX as an example):

● No synchronous update of metadata/schemas for all cluster nodes
● Need to create index entries for all existing rows in the table
● Need to update entries for concurrent user changes

The Solution
Version all schemas.

Allow sessions to use current or the previous schema version

Use sub-state transitions:

● So that version N-1 is compatible with version N

Create states that will allow the full transition:

● From state ‘None/Start’ to state ‘Public’

Public (vN) (vN-1)

SELECT YES

INSERT YES

UPDATE YES

DELETE YES

Public (vN) (vN-1)

SELECT YES NO

INSERT YES YES

UPDATE YES YES

DELETE YES YES

Public (vN+1) Write Only (vN) (vN-1)

SELECT YES NO NO

INSERT YES YES ?

UPDATE YES YES

DELETE YES YES

Public (vN+1) Write Only (vN) (vN-1)

SELECT YES NO NO

INSERT YES YES NO - Backfill
will handle it

UPDATE YES YES

DELETE YES YES

Public (vN+1) Write Reorg (vN) Write Only (vN-1)

SELECT YES NO NO NO

INSERT YES YES YES NO

UPDATE YES YES YES

DELETE YES YES YES

Public (vN+2) Write Reorg (vN+1) Write Only (vN) (vN-1)

SELECT YES NO NO NO

INSERT YES YES YES NO

UPDATE YES YES YES ?

DELETE YES YES YES

2 A

8 W

15 K

46 V

Table (Public)

A 2

V 46

New Index (Write Only)

Index backfill

t0: Session in Write Only:
Insert (46, ‘V’)

2 A

8 W

15 K

46 R

Table (Public)

A 2

V 46

New Index (Write Only)

Index backfill

t0: Session in Write Only:
Insert (46, ‘V’)

t1: Session before Write Only:
UPDATE (46, ‘R’)

?
Update, since table is ‘Public’

2 A

8 W

15 K

46 R

Table (Public)

A 2

V 46

New Index (Write Only)

Index backfill

t0: Session in Write Only:
Insert (46, ‘V’)

t1: Session before Write Only:
UPDATE (46, ‘R’)

DELETE Only, cannot INSERT, due to risk
of orphan index entry.

Public (vN+2) Write Reorg (vN+1) Write Only (vN) (vN-1)

SELECT YES NO NO NO

INSERT YES YES YES NO

UPDATE YES YES YES YES*

DELETE YES YES YES ?

Public (vN+2) Write Reorg (vN+1) Write Only (vN) Delete Only (vN-1)

SELECT YES NO NO NO

INSERT YES YES YES NO

UPDATE YES YES YES YES*

DELETE YES YES YES YES

Public (vN+3) Write Reorg (vN+2) Write Only (vN+1) Delete Only (vN) None/Start (vN-1)

SELECT YES NO NO NO NO

INSERT YES YES YES NO NO

UPDATE YES YES YES YES* NO

DELETE YES YES YES YES NO

Other DDL Optimizations

RocksDB can ingest pre-generated SST files
We use pre-generated files for backfilling

● Generate SST files and ingest them into TiKV/RocksDB
● No need to write to the new index in TiKV
● Negligible impact on concurrent load
● Efficient use of network, CPU and IO

Use optimized Co-processor framework for reads

● Direct KV transactional reads are expensive
● Co-processor works on local data, avoids network overhead

ADD INDEX Timings

Component Hardware

TiDB 16 vCPU 32 GiB RAM - c6g.4 x large

PD 8 vCPU 16 GiB RAM - c6g.2 x large

TiKV 16 vCPU 64 GiB RAM 6T Disks - m6g.4 x large

10 TiDB and 15 TiKV Nodes

Test One-column Key Index Ten-columns Key Index

10TB Table with Global Sort 47m 1 hour 6 min

Agenda

Design Fundamentals
TiDB Architecture

Online DDL
Enhancing Database
Agility with Lightning-Fast
Schema Changes

Resource Control
Empowering Consolidated
Workloads with Precision
Resource Allocation

01 03

02 04 Tools

TiDB’s wide range of
tools for managing your
databases

Tools - All Open Source
Backup/Restore

Data Migration

TiCDC

TiSpark

TiDB Operator

Automated
operation and
maintenance
system for TiDB
cluster in K8S

Dumpling

Export Tool

Lightning

Import Tool

Syncdiff

Comparison Tool

TiUP

Package manager
for the TiDB
ecosystem

https://docs.pingcap.com/tidb/dev/backup-and-restore-overview
https://docs.pingcap.com/tidbcloud/migrate-from-mysql-using-data-migration
https://docs.pingcap.com/tidb/dev/ticdc-overview
https://docs.pingcap.com/tidb/dev/tispark-overview
https://docs.pingcap.com/tidb-in-kubernetes/stable/tidb-operator-overview
https://docs.pingcap.com/tidb/stable/dumpling-overview
https://docs.pingcap.com/tidb/stable/tidb-lightning-overview
https://docs.pingcap.com/tidb/stable/sync-diff-inspector-overview
https://docs.pingcap.com/tidb/stable/tiup-overview

Links
TiDB SQL Parser and Optimizer TiDB’s SQL Parser and Optimizer

TiKV / Placement Driver TiKV is a CNCF graduate project

TiFlash Column Store TiDB’s column store engine for analytic queries

OSSInsight GitHub realtime analytics with ~7 Billion GitHub events & growing

TiUP Quick and easy way to try out TiDB

Join our Slack Channel TiDB community slack channel

Chaos Mesh Chaos engineering for Kubernetes

http://github.com/pingcap/tidb
http://github.com/tikv/tikv
http://github.com/tikv/pd
https://github.com/pingcap/tiflash
http://ossinsight.io
http://tiup.io
http://slack.tidb.io
http://github.com/chaos-mesh

THANK YOU.

