
@vitessio

Horizontal Sharding
with Vitess

Andres Taylor, Rohit Nayak

@vitessio

- Why Shard?

- What is Vitess?

- Specifying sharding strategies

- Data sharding

- Query Planning

@vitessio

Why Shard?
- Physical limitations:

- Large database size
- Large number of rows in a table
- High QPS / CPU /IO usage requiring high-end hardware

- Massively scalable
- On-demand scaling (up or down)
- More resilient
- Enables the use of commodity hardware
- Isolation of tenants
- Differential SLA for some tenants

@vitessio

- aka Data sharding
- Common schema on all shards
- Tables spread across databases
- Related rows on the same shard
- Challenges

- Cross-shard queries
- Foreign Keys
- Unique Keys
- Autoincrement

Horizontal Sharding

@vitessio

- Why Shard?

- What is Vitess?

- Specifying sharding strategies

- Data sharding

- Query Planning

@vitessio

Vitess is a scalable, distributed database system
built around MySQL

@vitessio

What is Vitess?
Cloud Native
Database

Massively Scalable

Highly Available MySQL
Compatible

Works With
Database
Frameworks

ORMs

Legacy Code Third-Party
Applications

Logical Database

Many Physical
Databases

Query
Routing

gRPC Clients
MySQL protocol

Single
Connection

@vitessio

Architecture
Keyspace

@vitessio

- Why Shard?

- What is Vitess?

- Specifying sharding strategies

- Data sharding

- Query Planning

@vitessio

Sharding In Vitess

- Vertical Sharding:
- Multiple unsharded keyspaces, related tables split across keyspaces
- Use MoveTables VReplication workflows
- Intermediate step before data sharding

- Horizontal Sharding:
- Sharded Keyspace: defined by a VSchema
- Sharding Key: per table, one or more columns,
- Primary Vindex: maps sharding key to shard
- Secondary Vindexes: for common predicate columns
- Use Reshard VReplication workflows
- Use Sequences for Autoincrements, backed by unsharded keyspace
- Reference and Materialize’d tables for data locality

@vitessio

Sharding Strategies

- Range-based Sharding
- {-}, {-80,80-}, {-80, 80-c0, c0-dc00, dc00-dc80, dc80-}
- row => 64 bit keyspace_id, using one or more column values
- Mapping done by a Vindex function
- One shard per key range of contiguous keyspace_ids

- Sharding Key: per-row tuple of one or more column values
- Primary Vindex: projects the sharding key to a keyspace id (and hence shard)
- Vindexes defined in a VSchema
- Vindex types: binary, xxhash, custom json map, unicode_loose_xxhash, multicol

- Generic: strategy is not hard coded, nor is the app sharding aware
- Sharding key can be changed using MoveTables workflows

@vitessio

- Why Shard?

- What is Vitess?

- Specifying sharding strategies

- Data sharding

- Query Planning

@vitessio

Performing Reshards
- Sharding

- Reshard -w wf1 --target-keyspace customer Create --source-shards '0' --target-shards '-80,80-'

- Resharding
- Reshard -w wf2 --target-keyspace customer Create --source-shards '-80' --target-shards '80-c0,c0-'

- Control plane cli: vtctldclient
- Create → SwitchTraffic [→ ReverseTraffic] → Complete
- Show / Progress to debug/monitor

@vitessio

VReplication Workflows

- Target streams from source vttablets (replica/primary)
- Starts with a Copy phase

- One table at a time, in batches
- On Source: Take consistent snapshot, streaming select
- On Target: Bulk insert into target
- State maintained in a sidecar database.
- Between tables/batches, stream binary logs, with dmls for copied ranges

- Move to Running (binlog streaming) phase until cutover

target/-80

target/80-

Unsharded

source/0

Copy Phase

Copy Phase

Binlog Playback

Binlog Playback

Sharded
Reshard

@vitessio

VReplication Workflows

- Fast, eventually consistent
- Near-zero downtime cutover
- Resumable, resilient to:

- primary failovers,
- network outage

- Throttling, based on:
- replica lag
- history list length
- custom mysql query: max #connections, #threads_running,

@vitessio

Indicative Performance

- One Table: 170GB, 3.2B rows, 3 secondary indexes
- Copy: 17K rows/s, 13 hours + 4 hours reindex, (42 hours wo reindex)

- One Table: 4.15TB, 7.8B rows, 3 secondary indexes
- Copy: 62K rows/s, 35 hours total, 1=>4 shards

- Performance factors
- Environment: CPU/IO/Memory, Network latency/bandwidth, MySQL settings

- Application:
- #tables, #rows, row widths, data types/blob, PK types, Indexes
- write/read QPS, large transactions

- VReplication Settings: Packet Size, Copy phase duration, Parallel copy, Throttling

@vitessio

Sharding Stories
- Scaling Datastores At Slack With Vitess

https://slack.engineering/scaling-datastores-at-slack-with-vitess/

- Sharding Cash
https://developer.squareup.com/blog/sharding-cash/

- Horizontally Scaling The Rails Backend Of Shop App With Vitess
https://shopify.engineering/horizontally-scaling-the-rails-backend-of-shop-app-with-vitess

- Scaling Etsy Payments With Vitess
https://www.etsy.com/codeascraft/scaling-etsy-payments-with-vitess-part-1--the-data-model

- One Million Queries Per Second With MySQL
https://planetscale.com/blog/one-million-queries-per-second-with-mysql

- Vinted Vitess Voyage: Chapter 3 - The Great Migration
https://vinted.engineering/2023/04/27/vinted-vitess-voyage-chapter-3-the-great-migration/

https://slack.engineering/scaling-datastores-at-slack-with-vitess/
https://developer.squareup.com/blog/sharding-cash/
https://shopify.engineering/horizontally-scaling-the-rails-backend-of-shop-app-with-vitess
https://www.etsy.com/codeascraft/scaling-etsy-payments-with-vitess-part-1--the-data-model?ref=codeascraft
https://planetscale.com/blog/one-million-queries-per-second-with-mysql
https://vinted.engineering/2023/04/27/vinted-vitess-voyage-chapter-3-the-great-migration/

@vitessio

- Why Shard?

- What is Vitess?

- Specifying sharding strategies

- Data sharding

- Query Planning

@vitessio

Meet the vtgate
Query Planner

(all the following images by DALL-E, except one)

@vitessio

Beyond Naive
Approach

@vitessio

Evolution of the
Vitess Planner

@vitessio

The v3 Planner
Breakthrough

@vitessio

Gen4 Planner:
A New Era

@vitessio

First Steps in
Query Planning

Parsing
string -> AST

Semantic Analysis
AST -> AST++

@vitessio

Simplifying
Unsharded
Queries

@vitessio

From AST to
Operator Tree

@vitessio

The Route
Operator in
Action

@vitessio

Understanding
Vindexes in
Sharding

@vitessio

Cost Estimation

@vitessio

Optimizing
Joins in Query
Planning

@vitessio

Tree Rewriting

@vitessio

Phases of
Query PlanningSELECT count(*)

FROM user u
 JOIN user_extra ue
 ON u.id = ue.foo

@vitessio

Initial tree

Horizon
└── QueryGraph (`user`, user_extra)

@vitessio

PHASE: physical transformation

Horizon
└── ApplyJoin (ue.foo cols:)
 ├── Route (Scatter:user)
 │ └── Table (user_extra AS ue)
 └── Route (Unique user[user_vindex|:ue_foo])
 └── Filter (u.id = :ue_foo)
 └── Table (user AS u)

@vitessio

PHASE: horizon expansion

Aggregator (count(*))
└── ApplyJoin
 ├── Route
 │ └── Table
 └── Route
 └── Filter
 └── Table

@vitessio

PHASE: split aggregation and push under join

Aggregator (sum_count(c3) AS count(*))
└── Projection (c1 * c2 AS c3)
 └── ApplyJoin (cols: c1, c2)
 ├── Aggregator (count(*) c1 GB ue.foo)
 │ └── Route
 │ └── Table
 └── Aggregator (count(*) as c2)
 └── Route
 └── Filter
 └── Table

@vitessio

Aggregator
└── Projection
 └── ApplyJoin
 ├── Route
 │ └── Aggregator(count(*) as c1 GB ue.foo)
 │ └── Table
 └── Route
 └── Aggregator (count(*) as c2)
 └── Filter
 └── Table

>>>>>>>> push aggregation under route

@vitessio

After offset planning

Aggregator (sum_count(0))
└── Projection (:0 * :1)
 └── ApplyJoin
 ├── Route (Scatter:user)
 │ └── select count(*), ue.foo
 │ from user_extra as ue
 │ group by ue.foo
 └── Route (Unique user[user_vindex|:ue_foo])
 └── select count(*)
 from `user` as u
 where u.id = :ue_foo

@vitessio

Creating the
Illusion

@vitessio

The Future:
gen5 and
Cardinality
Model

@vitessio

Questions and
Discussions

