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Major Challenges in Generative Al

1) Large Language Models (LLMs) prone to Hallucinations

A plausible but false or misleading response generated by an Al algorithm

« ChatGPT “an omniscient, eager-to-please intern who sometimes lies to you™
« Some studies estimate chatbots to hallucinate as much as 27% of the time

* How to mitigate this inherent issue in LLMs?

* Prof. Ethan Mollick,

Wharton School of Business
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Major Challenges in Generative Al

2)

Incorporate Additional Information Sources in LLMs

At their core, LLMs can generate information only based on knowledge from their training data. 2
inherent limitations:

« Given size and investment needed, training data tend to be out-of-date (ChatGPT: January 2022)

* Pre-trained LLMs only trained on publicly available information (no business-specific info)

In other words, LLMs generate answers only based on the information memorized at training time
within the model and the query provided — 2 strategies to incorporate additional information

*  Fine-tuning: further train the LLM on additional training data (very costly, requires expertise)

* Grounding: add additional relevant information as part of the query. Possible since LLMs have very large
context windows (maximum number of tokens as input for text generation)

Copyright © 2023, Oracle and/or its affiliates




Meet Retrieval-Augmented Generation (RAG)

RAG is an LLM framework aiming to leverage the grounding process to solve both problems

- Generate higher-quality responses and mitigate hallucinations

* Grounding also effective in reducing hallucination, especially when combined with prompt engineering

- Automate and make the grounding process efficient

« How do we efficiently look for relevant information from external sources and incorporate it in the context
window?
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How Does “Manual” LLM Grounding Work?
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How Does RAG Work?
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Why MySQL HeatWave Lakehouse a Good Fit?

8

HeatWave Cluster
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Both OLAP and RAG aim to answer user
queries based on relevant information from
a knowledge base

HeatWave right at the intersection of 2
important knowledge base types

« Database tables

« Unstructured documents in object storage




LLM Model Serving

For RAG, we need to be able to serve LLM models

« MySQL HeatWave leverages the OCI Generative Al service (Beta, GA) with support for
« Cohere LLM models (Command, Embed, Summarization)

« Meta’s Llama2 model

® cohere
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Vector Store

Vector Store to manage vector embeddings from different knowledge bases

« Vector embeddings are generated by the LLM (encoder component)

» Capture semantics of underlying text snippets

WOMAN

MAN /
UNCLE
QUEEN

AUNT
semantic:  v(king) - v(man) + v(woman) = v(queen)

KING

* How to easily and efficiently populate vector store with such embeddings?

« MySQL HeatWave: easy ingestion of documents in various formats (.pdf, .ppt, txt) from object storage

Image source: https://lena-voita.github.io/nlp_course/word_embeddings.html
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Similarity Search

Vector embeddings capture semantics -

Most relevant documents for a user’s query ~ closest embeddings in the vector space

« Different ways to compute similarity of vectors: cosine distance, Euclidean distance...

« Computing similarities for all embeddings in a vector store can become costly

» Various types of indices commonly used (e.g. IVF, HNSW...) for approximate search to improve performance
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Thank you!

Q&A
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