
Group Replication in Uber
Bumpy road to MultiMasterness

Giedrius Jaraminas (giedrius@uber.com)
January 2020

Giedrius Jaraminas

● Previously:

Oracle First Line Support

Oracle Certified Master

Oracle University lector

● Currently:

Engineering Manager of MySQL team in Uber

● There are more than 75 million active Uber
riders across the world.

● Uber is available in more than 80 countries
worldwide.

● Uber has completed more than 5 billion rides.
● Over 3 million people drive for Uber.
● In the United States, Uber fulfills 40 million

rides per month.

Uber Technologies, Inc.

https://muchneeded.com/uber-statistics/
https://muchneeded.com/uber-statistics/

● The main offer as a relational database
● Critical for Infrastructure

○ The first data store to be emerged in a new
Zone

● The platform for home-built offers

MySQL in Uber

Why Group Replication

What is troubling in classic MySQL?

● Primary node - SPOF
● Even planned promotion requires some write

outage
○ Were able to lower this <1 minute

■ Customers still not happy about it
○ Expected 99.99% availability gives only ~53

downtime minutes per year
○ Promotions are regular

● Cross-region latency
● Strong consistency across regions

Datastore Discovery

● Routing vs Smart client (SmartProxy). Holy war
○ Routing -> HAproxy on ~80k hosts
○ SC -> dependency on App rebuilds

● Current winner is Routing
● New offer gave chance for SC
● So, we implemented one

○ Customer said NO
● Needed to extend the existing routing

For customers two changes at the time might be too much

Latency

● In Single Primary two regions may result in a
cross-region latency
○ The favorite topic for Customers to complain

● GR in WAN is not welcomed
● But actually - GR performed better:

○ Than Galera (expected)
○ Than remote-region connection (surprise)

● Performed slower:
○ Than local MySQL for writes. Nothing

personal - just physics.
Apparently - steady latency is more welcomed by customers
than lower, but unpredictable one

The trap of 2 regions

● You can have equal number of nodes in both
regions
○ Loose High Availability

● Or you can have quorum within one region
○ Latency depending on the region
○ Serious problems in case the “favorite” region

goes down

Luckily, the regions have availability zones, so at least
the disappearance of a whole region is less probable

Vs

We are using 3:2 configuration as default, and one of the 3 is
in cloud-zone

Scalability

● Currently GR supports up to 9 members in group
● For a comparison - the biggest regular MySQL

cluster in our fleet has ~150 replicas
● There is a possibility to create a ‘Snowflake’

○ If you are willing to have a heterogenous
architecture

○ (to be honest 150 replicas are also in a
‘Snowflake’)

○ Might be a problem if you have >9 regions
and need to be writable everywhere

Actually, big clusters might not be required for every use-case

Migration is a charm

● Heterogenous topology is supported
○ Even 5.7<->8.0

● Prepared environment can wait
● ~5 minutes write outage during switchover
● Other than that - transparent to service
● Hooray - 1st datastore in production use!

Sugar-free soda

Well-deserved rest

… both ways … luckily

● After 8 hours of using GR errors threshold alert
triggered

● Service was receiving an error almost on every
update

● Migrated back to previous (classic) MySQL
● Apparently tests on staging were false-success

Post-mortems
Testing plan rewrite
Version upgrade

Concurrent DML’s

● Foreign keys are no-no (from 64% to 25% of
errors during concurrent inserts)

● Concurrent updates (even on not-clashing rows)
may fail (up to 40%)
○ “read uncommitted” does not help
○ this is not intuitive

● Big (~ 2M row, NOT concurrent) deletes may fail
● Operations may fail during commit
● 8.0.17, stress-testing, 5 nodes cluster. In

real-world environment the numbers may differ
The App must be able to repeat any failed transaction

3101 1180 1213

DDL + DML

● DDL in one node while DML in other (on the same
object) - “not supported”

● Cluster is destroyed
● To perform DDL you need:

○ Either block DML’s (write outage)
○ Either temporary switch to single-primary

● Luckily - we do not allow users to execute DDL’s
directly (there is a goal-state based process for
that). So we were able to integrate the switching to
Single Primary mode (still GR) in the workflow

To be honest - this was kind-a mentioned in documentation

Epilogue

● In a week the first service was re-onboarded
● There are several production services using Group

Replication for >6 months
● No major incidents

○ Was able to withstand partial network outage
● It is a niche product that made a nice addition to

our portfolio.
● If you can’t allow any downtime but can retry

transactions - the Group Replication is here for
you (especially if you have at least three Zones)

The key to success is the management of expectations

Q/A

Thank You!

